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Abstract
Forage	fishes	are	a	critical	food	web	link	in	marine	ecosystems,	aggregating	in	a	hi-
erarchical	 patch	 structure	 over	 multiple	 spatial	 and	 temporal	 scales.	 Surface-	level	
forage	fish	aggregations	(FFAs)	represent	a	concentrated	source	of	prey	available	to	
surface-		and	shallow-	foraging	marine	predators.	Existing	survey	and	analysis	methods	
are	often	imperfect	for	studying	forage	fishes	at	scales	appropriate	to	foraging	preda-
tors,	making	 it	difficult	 to	quantify	predator–	prey	 interactions.	 In	many	cases,	gen-
eral	distributions	of	forage	fish	species	are	known;	however,	these	may	not	represent	
surface-	level	prey	availability	to	predators.	Likewise,	we	lack	an	understanding	of	the	
oceanographic	drivers	of	spatial	patterns	of	prey	aggregation	and	availability	or	forage	
fish	community	patterns.	Specifically,	we	applied	Bayesian	joint	species	distribution	
models	to	bottom	trawl	survey	data	to	assess	species-		and	community-	level	forage	
fish	distribution	patterns	across	the	US	Northeast	Continental	Shelf	(NES)	ecosystem.	
Aerial	digital	surveys	gathered	data	on	surface	FFAs	at	two	project	sites	within	the	
NES,	which	we	used	in	a	spatially	explicit	hierarchical	Bayesian	model	to	estimate	the	
abundance	and	size	of	surface	FFAs.	We	used	these	models	to	examine	the	oceano-
graphic	drivers	of	forage	fish	distributions	and	aggregations.	Our	results	suggest	that,	
in	the	NES,	regions	of	high	community	species	richness	are	spatially	consistent	with	
regions	of	high	surface	FFA	abundance.	Bathymetric	depth	drove	both	patterns,	while	
subsurface	features,	such	as	mixed	layer	depth,	primarily	influenced	aggregation	be-
havior	and	surface	features,	such	as	sea	surface	temperature,	sub-	mesoscale	eddies,	
and	fronts	influenced	forage	fish	diversity.	In	combination,	these	models	help	quantify	
the	availability	of	forage	fishes	to	marine	predators	and	represent	a	novel	application	
of	spatial	models	to	aerial	digital	survey	data.
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1  |  INTRODUC TION

Prey	availability,	a	function	of	the	density	of	prey	resources	and	their	
accessibility	to	predators,	is	an	important	factor	affecting	the	abun-
dance	and	distribution	of	marine	species	(Frederiksen	et	al.,	2006).	
Marine	 prey	 species	 are	 hierarchically	 organized	 over	 multiple	
spatial	 and	 temporal	 scales	with	 individuals	 grouping	 to	 form	 co-
hesive	aggregations	(e.g.,	swarms,	schools,	or	shoals)	at	fine	scales	
(<1 km)	and	aggregations	forming	distinct	organizational	patterns	at	
submesoscales	 (1–	10 km)	 and	mesoscales	 (10–	1000 km)	 across	 the	
broader	 regional	 seascape	 (spatial	 extents	>10,000 km2;	 Fauchald	
et	al.,	2000;	Russell	et	al.,	1992;	Steele,	1978).	Frequently,	marine	
prey	 distributions	 are	 described	 at	 coarser	mesoscale	 resolutions,	
simplified	 as	 general	 occupancy	 (i.e.,	 presence	 or	 absence)	 and/or	
integrated	over	the	water	column	(Arkema	et	al.,	2006;	Ruckelshaus	
et	 al.,	 2008).	 These	 generalizations	 discount	 the	 patchy	 nature	 of	
prey	 availability	 at	 smaller	 scales,	 which	 many	 marine	 predators	
target	 within	 the	 broader	 prey	 distribution	 to	 increase	 foraging	
efficiency	 and	 success	 (Fauchald	 et	 al.,	 2000;	 Wellenreuther	 &	
Connell,	2002).	Thus,	while	the	broad-	scale	distribution	of	prey	may	
set	the	limits	of	marine	predator	distribution,	the	timing	and	spatial	
patterns	 of	 prey	 aggregations	 determine	 realized	 prey	 availability,	
impacting	the	fine	and	submesoscale	habitat	use	of	predators.

Small,	schooling	pelagic	forage	fishes	are	a	critical	prey	resource	
within	marine	food	webs,	linking	primary	production	and	zooplankton	
to	upper	 trophic	 level	predators,	 such	as	seabirds,	 seals,	cetaceans,	
piscivorous	fishes,	and	squids	(Cury	et	al.,	2000;	Pikitch	et	al.,	2012).	
Forage	fishes	form	large,	dense	aggregations	 in	a	hierarchical	patch	
structure	that	varies	over	 fine	spatial	and	temporal	scales	 (Freon	&	
Misund,	1999;	Pitcher,	1986).	Although	other	groups	such	as	squids	
and	juvenile	stages	of	some	piscivorous	fishes	(e.g.,	age	0–	1	ground-
fish),	also	exhibit	schooling	behavior	and	can	serve	a	similar	functional	
role,	small	pelagic	forage	fishes	remain	in	this	role	throughout	their	life	
history	and	are	the	primary	forage	species	in	many	marine	ecosystems	
(Rountos,	2016).	The	formation	and	distribution	of	forage	fish	aggre-
gations	(FFAs)	are	driven	by	a	combination	of	their	responses	to	the	
physical	abiotic	environment	(e.g.,	physiological	thermal	constraints)	
and	 responses	 based	on	biotic	 interactions	 (e.g.,	 foraging,	 predator	
avoidance,	and	spawning;	Genin,	2004;	Pitcher,	1986).	Surface-	level	
FFAs,	 in	 particular,	 are	 important	 for	 surface	 or	 shallow-	foraging	
predators	(e.g.,	plunge-	diving	or	dipping	seabirds;	Fauchald,	2009)	and	
predators	that	trap	aggregated	forage	fishes	between	themselves	and	
the	surface	as	a	foraging	strategy	(e.g.,	cetaceans,	sharks,	and	pursuit-	
diving	seabirds),	which	often	form	multispecies	feeding	associations	
for	efficient	exploitation	(Thiebault	et	al.,	2016).

Differences	in	survey	and	sampling	methods	between	forage	fishes	
and	their	predators	make	it	challenging	to	obtain	prey	availability	data	

at	behaviorally	relevant	scales	to	discern	predator–	prey	relationships,	
resulting	in	a	fundamental	scale	mismatch	between	predator	and	prey	
data	(Benoit-	Bird	et	al.,	2013;	Fauchald	et	al.,	2000).	For	instance,	bot-
tom	trawl	surveys	are	routinely	used	in	fisheries	stock	assessments	
to	discern	abundance	and	distribution	of	multiple	fish	species	across	
broad	 seascape	 areas	 (Despres-	Patanjo	 et	 al.,	 1988).	 Bottom	 trawl	
surveys	are	not	optimal	for	sampling	low	to	mid-	trophic	level	pelagic	
forage	fishes,	since	the	gear	has	species-		and	size-	dependent	selec-
tivity,	and	in	deeper	waters	may	only	reliably	sample	pelagic,	school-
ing	 forage	 fishes	upon	deployment	 and	 recovery	 as	 the	net	moves	
vertically	through	the	water	column.	Nonetheless,	while	forage	fishes	
are	primarily	mid-	water	 species,	 they	do	use	 the	 full	water	 column	
over	 the	 continental	 shelf	 via	 several	mechanisms	 (i.e.,	 diel	 vertical	
migration,	predator	avoidance,	spawning,	and	over-	wintering;	Freon	
&	Misund,	1999).	In	the	Northeast	U.S.	Continental	Shelf	ecosystem	
(NES),	forage	fishes	are	routinely	captured	in	bottom	trawls	and	the	
distribution	of	these	captures	 is	systematic,	 likely	representing	true	
broadscale	 distribution	 tendencies	 (Friedland	 et	 al.,	 2023; Roberts 
et	al.,	2022;	Suca,	Deroba,	et	al.,	2021).	However,	bottom	trawl	sur-
veys	are	ill-	suited	for	monitoring	the	distribution	of	surface-	level	FFAs	
on	which	many	predators	rely.	Large-	scale	active	acoustic	surveys	are	
widely	used	for	conducting	abundance	(i.e.,	biomass)	surveys	of	forage	
fishes	(Jech	&	McQuinn,	2016;	McQuinn,	2009).	Yet,	acoustic	surveys	
for	assessing	FFA	characteristics	specifically,	including	horizontal	and	
vertical	 distribution,	 school	 density,	 and	predator–	prey	 interactions	
(Lucca	&	Warren,	2019;	Thayne	et	al.,	2019)	are	often	conducted	at	
small	spatial	scopes,	and	seascape-	level	patterns	in	the	distributions	
of	FFAs	are	largely	unknown.

Despite	 the	 importance	 of	 comparing	 predator	 foraging	 suc-
cess	 and	 behavior	 to	 prey	 distributions	 at	 interaction-	level	 scales	
(Fauchald,	2009;	Russell	 et	 al.,	1992),	 forage	 fishes	 are	 frequently	
compared	with	 predators	 at	much	 coarser	 scales	 or	 omitted	 from	
analyses	of	predator	distributions	entirely	due	 to	data	paucity,	 re-
sulting	 in,	at	best,	unexplained	variance	in	trophic	responses	or,	at	
worst,	an	inability	to	detect	meaningful	trophic	relationships	(Hunt	
&	Schneider,	1987;	Levin,	1992).	These	challenges	have	prevented	
clear	 tests	 of	 predator–	prey	 hypotheses	 at	 relevant	 scales,	 and	
many	studies	have	not	 found	strong	 relationships	between	 forage	
fish	distributions	and	marine	predators	 (Fauchald,	2009;	Grémillet	
et	al.,	2008;	Russell	et	al.,	1992;	Torres	et	al.,	2008).

Forage	 fishes	 are	 often	 characterized	 by	 asynchronous	 “boom	
and	 bust”	 population	 cycles,	 resulting	 in	 high	 temporal	 variability	
in	 species	 dominance	 (Schwartzlose	 et	 al.,	1999).	 In	 addition,	 for-
age	fishes	form	large,	multispecies	aggregations,	which	vary	spatio-
temporally	across	scales	(Cury	et	al.,	2000;	Engelhard	et	al.,	2014).	
Consequently,	many	marine	predators	are	not	dependent	on	a	single	
forage	 fish	 species,	 instead	 favoring	 generalist	 feeding	 strategies	
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or	engaging	 in	prey-	switching	behavior	 (Cury	et	al.,	2000).	 In	 fact,	
local	density,	species	composition,	and	spatial	availability	of	forage	
fishes	generally	are	key	factors	in	the	foraging	and	reproductive	suc-
cess	of	marine	predators	(Benoit-	Bird	et	al.,	2013;	Davoren,	2013).	
Community-	level	measures	of	forage	fish	distribution	or	abundance	
may	 be	 an	 indicator	 of	 realized	 prey	 availability	 for	 opportunistic	
generalist	 predators	 (Koehn	 et	 al.,	 2016).	 Understanding	 forage	
fish	 community	 dynamics	 and	 the	 oceanographic	 features	 driving	
these	 patterns	 may	 be	 more	 applicable	 to	 predator–	prey	 studies	
than	examining	these	patterns	at	 the	 individual	prey	species	 level.	
Advances	in	joint	species	distribution	modeling	(JSDM)	allow	for	the	
estimation	of	community-	level	distributions,	environmental	niches,	
and	species	associations	(Ovaskainen	&	Abrego,	2020;	Ovaskainen	
et	al.,	2017;	Roberts	et	al.,	2022;	Warton	et	al.,	2015),	which	may	be	
more	relevant	in	some	cases	to	marine	predator–	prey	relationships	
than	the	results	of	single-	species	habitat	modeling.

Aircraft-	based	aerial	digital	video/photographic	surveys,	designed	
to	target	seabirds,	marine	mammals,	and	other	marine	predators,	are	
a	 technological	advancement	 that	enables	 the	 reliable	detection	of	
surface	FFAs	across	regional	seascapes	(Buckland	et	al.,	2012;	Taylor	
et	al.,	2014).	Observations	of	surface	FFAs	from	digital	aerial	surveys	
allow	 for	 investigation	 of	 processes	 driving	 realized	 prey	 availabil-
ity,	 as	 FFAs	 integrate	 both	 interaction-	level	 scales	 (i.e.,	 prey	 patch	
distribution)	 and	 community-	level	 dynamics	 (i.e.,	 aggregations	 can	
represent	multiple	species).	In	the	absence	of	FFA	data,	many	stud-
ies	of	marine	predator	distributions	rely	on	oceanographic	features,	
such	as	bathymetry,	sea	surface	temperature	(SST),	and	chlorophyll	
concentration,	 as	 proxies	 for	 prey	 availability	 (Becker	 et	 al.,	2016; 
Palacios	 et	 al.,	2014;	 Torres	 et	 al.,	 2008),	 assuming	 these	 features	
adequately	represent	prey	patterns.	For	example,	some	seabird	spe-
cies	 have	 been	 associated	 with	 frontal	 features,	 which	 have	 been	
interpreted	 as	 an	 aggregating	 mechanism	 for	 prey	 (Scales,	 Miller,	
Embling,	et	al.,	2014).	While	some	of	these	oceanographic	features	
are	 known	 to	 play	 a	 role	 in	 the	 general	 distribution	 of	 forage	 fish	
species	 (Friedland	et	 al.,	2019;	 Suca,	Deroba,	 et	 al.,	2021),	we	 lack	
an	understanding	of	the	physical	and	biological	mechanisms	driving	
the	formation	and	distribution	of	surface	FFAs	(Cox	et	al.,	2018;	Peck	
et	al.,	2021).	 In	addition,	data	on	 relevant	oceanographic	variables,	
such	as	subsurface	features,	are	often	lacking	at	appropriate	spatio-
temporal	scales	for	modeling	dynamic,	ephemeral	processes	such	as	
aggregation	 formation,	 leading	 to	 an	 incomplete	 understanding	 of	
the	oceanographic	processes	driving	forage	fish	distribution	and	ag-
gregation	(Brodie	et	al.,	2018;	Mannocci	et	al.,	2017).

Data	from	aerial	digital	surveys	offer	a	novel	opportunity	to	as-
sess	the	oceanographic	processes	driving	the	abundance	and	size	of	
FFAs	and	whether	those	differ	from	the	drivers	of	forage	fish	occur-
rence	distributions.	Surface	FFAs	are	a	product	of	 forage	fish	pres-
ence	and	a	behavioral	response.	Thus,	distributions	of	FFAs	are	not	
necessarily	driven	by	the	same	environmental	features	as	broadscale	
occurrence.	Static	habitat	 features	 (i.e.,	bathymetric	depth	and	bot-
tom	 topography)	 can	 interact	 with	 dynamic	 ocean	 processes,	 cre-
ating	conditions	 that	promote	 the	 formation	of	FFAs	 (Genin,	2004; 
Holland	et	al.,	2021).	For	example,	zooplankton	in	coastal	waters	can	
accumulate	 via	 currents	 and	 high	 chlorophyll-	a	 along	 productivity	

fronts;	 shallow	 topography	 then	 prevents	 downward	 migration	 of	
zooplankton,	 driving	 increased	 surface	 FFAs	 which	 forage	 on	 the	
concentrated	 plankton	 (Holland	 et	 al.,	 2021).	 Subsurface	 dynamic	
processes,	 such	as	 stratification,	 also	 influence	aggregating	mecha-
nisms	via	concentrating	nutrients,	subsurface	productivity,	and	zoo-
plankton	 (Genin,	2004).	Abrupt	 changes	 in	bottom	 topography	can	
interact	with	water	column	stratification	to	drive	FFAs	to	the	surface	
(Cox	et	al.,	2018).

We	 used	 models	 of	 the	 forage	 fish	 community	 distribution	
alongside	 independent	models	 of	 FFA	 distribution	 to	 address	 the	
following	questions:

1.	 Do	broadscale	distributions	of	the	forage	fish	community	in	the	
NES	 ecosystem,	 as	 determined	 from	 long-	term	 bottom	 trawl	
surveys,	 demonstrate	 relationships	 to	 patterns	 of	 surface	 prey	
availability,	 as	determined	 from	aerial	digital	 surveys	of	 surface	
FFAs?

2.	 Which	 oceanographic	 processes	 are	 driving	 the	 spatial	 distri-
butions	of	 forage	 fishes	 at	 these	differing	organizational	 scales	
(broadscale	occupancy	distribution	vs.	surface	FFA	distribution)?

3.	 Where	are	regions	of	high	realized	prey	availability?

To	examine	broad	patterns	in	forage	fish	community	dynamics,	
we	modeled	the	joint	distribution	of	15	surface-	aggregating	forage	
fish	 species	 from	 the	NES	 in	 autumn	and	 spring.	We	used	digital	
aerial	 survey	 data	 of	 surface	 FFAs	 from	 the	New	 York	 and	Mid-	
Atlantic	Bights	to	model	the	spatial	distribution	of	FFA	abundance	
and	size	by	season.	To	determine	which	oceanographic	processes	
influence	prey	availability	and	broad-	scale	forage	fish	distribution,	
we	 included	a	set	of	environmental	covariates	 representing	 three	
categories:	static	physical	habitat	 (i.e.,	bathymetric	measures),	dy-
namic	surface	processes	 (i.e.,	 temperature	and	chlorophyll	 fronts,	
eddies),	 and	 dynamic	 subsurface	 processes	 (i.e.,	 stratification).	
We	predicted	that	different	environmental	processes	would	drive	
forage	 fish	 distributions	 and	 surface	 FFAs	with	 dynamic	 features	
more	 influential	 to	FFAs.	We	found	that	multiple	models	describ-
ing	 forage	 fish	distributions	 at	 community	 and	 aggregation	 levels	
can	provide	a	more	complete	picture	of	the	conditions	driving	the	
broadscale	distribution	and	aggregation	behavior	of	forage	fishes,	
and,	thus,	prey	availability	for	surface-		and	shallow-	foraging	marine	
predators.

2  |  MATERIAL S AND METHODS

2.1  |  Study region

This	study	has	multiple	nested	regions,	the	largest	being	the	NES,	a	
well-	studied	marine	ecosystem	(Sherman	&	Skjoldal,	2002),	encom-
passing	the	shelf	waters	along	the	western	boundary	of	the	North	
Atlantic	Ocean	from	Cape	Hatteras,	North	Carolina	to	the	Gulf	of	
Maine	(Figure 1a).	Within	the	NES,	two	study	areas,	the	New	York	
Bight	(Figure 1b;	Robinson	Willmott	et	al.,	2021)	and	the	Mid-	Atlantic	
Bight	(Figure 1c;	Williams	et	al.,	2015)	were	aerially	surveyed	with	
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high-	resolution	 digital	 cameras	 to	 estimate	 spatial	 distributions	 of	
marine	animals.

2.2  |  Data description

2.2.1  |  Bottom	trawl	surveys—	forage	fish	species/
community	data

The	 NOAA	 Northeast	 Fisheries	 Science	 Center	 has	 conducted	 a	
biannual	 fisheries-	independent	 bottom	 trawl	 survey	 across	 the	
NES	 ecosystem	 for	 over	 50 years	 (1968–	2019;	 Grosslein,	 1968,	

Appendix 1:	Section	1).	Bottom	trawl	surveys	are	conducted	in	the	
boreal	autumn	and	spring,	employing	a	random	stratified	survey	de-
sign	with	strata	based	primarily	on	depth	and	secondarily	on	latitude	
(Despres-	Patanjo	et	al.,	1988).	Within	strata,	 tow	 locations	are	as-
signed	randomly	prior	to	each	seasonal	survey.	A	minimum	of	two	
locations	 are	 sampled	 per	 strata,	 totaling	~300	 locations	 per	 sea-
son.	The	 trawl	net	has	a	12.5 mm	mesh	 liner	at	 the	codend	 to	 re-
tain	juvenile	and	small-	bodied	fishes.	We	used	tow	data	with	catch	
identification	 at	 the	 species	 level	 for	 15	 pelagic,	 schooling	 forage	
fishes	(Table 1).	Data	were	standardized	using	calibration	factors	to	
account	for	vessel	and	gear	changes	in	the	surveys	during	the	time	
series	(Miller	et	al.,	2010).	However,	the	bottom	trawl	gear	was	not	

F I G U R E  1 (a)	US	Northeast	Continental	Shelf	(NES)	study	area,	(b)	New	York	(NY)	Bight	aerial	digital	survey	transects,	and	(c)	Mid-	
Atlantic	Bight	aerial	digital	survey	transects.	Model	prediction	extents	are	depicted	via	blue	(NES)	and	orange	(FFA)	outlines.	Relevant	
geographic	features	are	labeled	(see	legend).	FFA,	forage	fish	aggregation;	ME,	Maine;	OPA,	offshore	planning	area;	WEA,	wind	energy	area.
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designed	to	capture	pelagic	forage	fishes;	thus,	even	after	standardi-
zation	for	temporal	gear	changes,	the	abundance/biomass	data	may	
not	 be	 fully	 representative	 of	 forage	 fishes.	 Therefore,	 we	 trans-
formed	raw	abundance/biomass	per	tow	to	binary	occupancy	data	
(presence/absence)	for	distribution	modeling.

2.2.2  |  Aerial	digital	surveys—	forage	fish	
aggregation	data

High-	resolution	 aerial	 digital	 surveys	 were	 conducted	 as	 baseline	
ecological	 studies	 of	 designated	 offshore	 planning	 areas	 (OPAs;	
Figure 1b,c)	 for	 wind	 energy	 development	 and	 were	 designed	
to	 estimate	 patterns	 of	 above-	water	 and	 surface-	level	 fauna.	
Detectability	 of	 submerged	 FFAs	 in	 these	 surveys	 varies	 due	 to	
water	turbidity	and	weather	conditions	with	the	estimated	average	
vertical	penetration	of	the	water	column	being	~3 m	and	a	maximum	
penetration	under	ideal	conditions	of	~8–	9 m	(Hodgson	et	al.,	2017; 
Martin	Scott,	HiDef	Aerial	Surveying,	Ltd.,	pers.	comm).	Therefore,	
this	 data,	 including	 subsequent	 analysis	 and	 interpretation,	 repre-
sents	 only	 surface	 FFAs.	Observations	 of	 the	 number	 and	 size	 of	
surface	FFAs	were	collected	from	two	aerial	digital	survey	projects	
(Appendix 1:	 Section	 1):	 (1)	 the	New	York	 State	 Energy	 Research	
and	 Development	 Authority	 (NYSERDA)	 Digital	 Aerial	 Baseline	
Survey	of	Marine	Wildlife	in	Support	of	Offshore	Wind	Energy	pro-
ject	 (hereafter,	 New	 York	 project)	 and	 (2)	 Department	 of	 Energy	
(DOE)	Mid-	Atlantic	Baseline	Studies	project	(hereafter,	Mid-	Atlantic	
project).	 The	New	York	 project	 conducted	 aerial	 transect	 surveys	
(n = 12)	over	 the	New	York	Bight	 (43,745 km2,	Figure 1b)	quarterly	
over	 3 years	 (2016–	2019;	 Appendix 1:	 Section	 1).	 High-	resolution	

images	were	collected	using	two	still	camera	systems	(Shearwater	II	
and	III),	both	with	a	1.5 cm	ground	sampling	distance	(GSD;	Robinson	
Willmott	et	al.,	2021).	The	New	York	project	surveyed	the	OPA	with	
584 m	wide	 linear	 transect	strips	 for	7%	coverage	 in	all	3 years.	 In	
2016,	a	higher-	resolution	grid	survey	(330 × 219 m)	with	10%	cover-
age	was	also	conducted	across	the	smaller	wind	energy	area	(WEA).	
The	Mid-	Atlantic	project	conducted	aerial	transect	surveys	(n = 15)	
over	 the	 Mid-	Atlantic	 Bight	 (13,245 km2; Figure 1c)	 from	 March	
2012	to	May	2014	(Appendix 1:	Section	1)	with	four	belly-	mounted	
high-	resolution	video	cameras	(Gen	II),	creating	200 m	wide	transect	
strips.	 Initial	 surveys	 (n = 3)	 in	 2012	 used	 a	 combination	 of	 2	 and	
3 cm	GSD,	adjusted	to	only	2 cm	GSD	for	the	remainder	of	the	study	
to	 increase	 image	clarity	 and	color	 rendition	 for	 improved	 species	
identification	across	all	taxa	(Hatch	et	al.,	2013).	High-	density	paral-
lel	 transect	 surveys	 (1 km	 spacing)	were	 conducted	 in	 each	of	 the	
smaller	WEAs,	providing	~20%	coverage,	while	the	remainder	of	the	
OPA	was	surveyed	via	a	sawtooth	transect	path	with	~2%	coverage.

For	both	projects,	FFAs	were	identified	from	the	transect	image	
data	using	detection	software	and	manual	review	methods	followed	
by	quality	control	(Buckland	et	al.,	2012;	Duron	et	al.,	2015;	Hatch	
et	al.,	2013;	Normandeau	Associates	Inc.,	2020).	FFAs	were	identi-
fied	as	cohesive	groups	of	similarly	sized	individuals	with	synchro-
nous	swimming	behavior,	where	 individuals	within	the	group	were	
indistinguishable	due	to	group	density	and	small	body	size.	Species	
composition	 of	 FFAs	 was	 not	 identifiable	 due	 to	 submersion	 and	
small	body	size,	but	mackerel,	menhaden,	herring,	and	hickory	shad	
are	major	 schooling	 species	 in	 the	 New	 York	 Bight	 (Normandeau	
Associates	Inc.,	2020),	while	menhaden,	mackerel,	herring,	bay	an-
chovy,	alewife,	and	blueback	herring	are	frequent	schoolers	 in	the	
Mid-	Atlantic	(Williams	et	al.,	2015).	The	vertical	height	of	the	FFAs	

TA B L E  1 Occurrence	(no.	of	tows	present)	of	surface	schooling	forage	fishes	from	the	bottom	trawl	surveys	of	the	US	Northeast	
Continental	Shelf	(NES)	study	area	included	in	the	community	distribution	models.

Code Common name Scientific name Family

Occurrencesa

Autumn Spring

alewif Alewife Alosa pseudoharengus Clupeidae 1124 3336

atherr Atlantic	thread	herring Opisthonema oglinum Clupeidae 337 1

atlher Atlantic	herring Clupea harengus Clupeidae 2082 3738

atlmac Atlantic	mackerel Scomber scombrus Scombridae 816 2033

atlmen Atlantic	menhaden Brevoortia tyrannus Clupeidae 115 99

atlsil Atlantic	silverside Menidia menidia Atherinopsidae 12 536

atsaur Atlantic	saury Scomberesox saurus Scomberesocidae 191 1

bayanc Bay	anchovy Anchoa mitchilli Engraulidae 660 231

bluher Blueback	herring Alosa aestivalis Clupeidae 496 2007

butter Atlantic	butterfish Peprilus triacanthus Stromateidae 4728 1806

rherri Round	herring Etrumeus teres Dussumieriidae 773 17

sandal Northern	sand	lance Ammodytes dubius Ammodytidae 327 703

silanc Silver	anchovy Engraulis eurystole Engraulidae 153 0

spsard Spanish	sardine Sardinella aurita Clupeidae 197 0

stranc Striped	anchovy Anchoa hepsetus Engraulidae 692 21

aBold	font	indicates	the	species	had	>20	occurrences	and	was	included	in	the	model	for	that	season.
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could	not	be	determined	from	the	imagery,	so	we	could	not	estimate	
FFA	volume.	Instead,	FFA	size	was	defined	as	the	visible	surface	area	
(m2)	of	each	FFA,	where	the	entire	FFA	was	manually	traced,	enhanc-
ing	the	color	of	the	image	as	necessary	to	determine	the	aggregation	
edges	(Streampix	8,	Norpix).	Calibrations	to	account	for	the	flight	al-
titude	and	pixel	resolution	were	applied	to	estimate	the	size	of	each	
shoal	in	m2	from	the	digital	image.

For	the	FFA	analysis,	we	aggregated	FFA	abundance	and	size	data	
to	a	4 × 4 km	grid	overlaid	on	the	FFA	study	area	(i.e.,	the	combined	
area	of	both	projects).	For	FFA	abundance,	FFAs	were	summed	for	
each	4 × 4 km	grid	cell	 (n = 3361)	by	 survey	and	season.	Survey	ef-
fort	per	grid	cell	was	calculated	by	summing	the	total	area	of	ground	
surveyed	(km2)	 in	that	grid	cell	by	survey	and	season.	The	4 × 4 km	
grid	was	nested	within	a	 larger	32 × 32 km	grid,	which	was	used	 in	
the	FFA	model	to	account	for	spatial	autocorrelation	in	the	data	(see	
Section	2.4).

2.3  |  Environmental data

We	included	a	combination	of	static	habitat	 features	and	dynamic	
oceanographic	 processes	 in	 our	 models	 as	 environmental	 covari-
ates.	Initially,	we	considered	28	environmental	covariates	(13	static,	
14	dynamic),	encompassing	a	range	of	surface	and	subsurface	fea-
tures	obtained	from	publicly	available	oceanographic	data	sources	
(Appendix 1: Tables A1	and	A2).	Static	habitat	included	bathymetric	
terrain	measures	(e.g.,	depth,	slope,	rugosity)	and	sediment	grain	size.	
Dynamic	covariates	included	remote-	sensed,	modeled,	and	derived	
data	 for	 surface	 and	 subsurface	 features	 (Appendix 1: Table A2).	
We	calculated	 the	SST	seasonal	anomaly	 (hereafter,	SST	anomaly)	
by	 dividing	 each	 SST	 value	 by	 the	 seasonal	 SST	mean	 across	 the	
FFA	4 × 4 km	grid	(Figure 1a).	SST	and	chlorophyll	fronts	and	frontal	
metrics	(i.e.,	Fprob:	front	persistence,	Fmean:	front	intensity;	Table 2)	
were	derived	from	the	raw	SST	and	chlorophyll	remote-	sensed	data	
products	 (see	Appendix 1:	Section	2	for	detailed	methods).	All	co-
variates	were	resampled	with	bilinear	interpolation	to	a	4 × 4 km	grid	
(spatially	concurrent	with	the	FFA	4 × 4 km	grid)	encompassing	the	
NES	study	area.	Dynamic	covariates	were	used	at	a	daily	temporal	
resolution,	matching	the	observation	date.

Final	 covariate	 sets	 (see	 Table 2	 for	 abbreviation	 definitions	
and	 descriptions)	 were	 selected	 for	 each	model	 after	 examining	
pairwise	Pearson	correlation	coefficients	 (−.6 > r > .6)	 and	assess-
ing	multi-	collinearity	with	variance	inflation	factors	(VIF < 3;	Zuur	
et	al.,	2009).	We	aimed	to	use	a	common	covariate	set	to	compare	
the	community	distribution	and	FFA	models,	but	this	was	not	pos-
sible	 due	 to	 differences	 in	 correlations	 and	multi-	collinearity	 for	
the	 datasets.	 Covariate	 substitutions	 among	 models	 were	 made	
to	represent	similar	features	(e.g.,	SST	anomaly	for	SST).	The	final	
covariate	sets	represented	static	habitat,	dynamic	surface,	and	dy-
namic	subsurface	features	(see	Section	2.4	and	Table 2	for	details).	
All	 covariates	 were	 mean-	centered	 and	 variance-	scaled	 prior	 to	
analysis.

2.4  |  Model description and evaluation

2.4.1  |  Forage	fish	community	models

We	 applied	 JSDMs	 to	 model	 the	 forage	 fish	 community	 in	 the	
NES,	using	the	HMSC	R-	package	(Hierarchical	Modeling	of	Species	
Communities,	version	3.0-	12;	Ovaskainen	&	Abrego,	2020;	Tikhonov	
et	al.,	2020).	HMSC	uses	a	Bayesian	multivariate	hierarchical	gener-
alized	linear	mixed	model	framework	to	simultaneously	fit	all	species	
distribution	models	and	 infer	 joint	 interactions	among	species	and	
environmental	covariates	(Ovaskainen	&	Abrego,	2020;	Ovaskainen	
et	al.,	2017).	The	HMSC	framework	uses	 latent	variables	to	model	
random	 effects	 and	 estimates	 residual	 species	 associations,	 pro-
viding	 inference	on	species	co-	occurrences	patterns	not	explained	
by	 responses	 to	 the	 environmental	 covariates	 (Ovaskainen	 &	
Abrego,	2020).

We	restricted	our	analysis	to	the	years	1997–	2019	(autumn)	and	
1998–	2019	(spring)	due	to	the	availability	of	remote-	sensed	chloro-
phyll	 data.	We	 selected	 species	with	 enough	presence	 detections	
(hereafter,	occurrences)	 in	the	data	to	achieve	a	well-	fitting	model	
(>20).	 The	 HMSC	 framework	 leverages	 the	 relationships	 among	
species	 to	 accurately	 model	 rare	 community	 members	 (Erickson	
&	 Smith,	2023;	Ovaskainen	&	Abrego,	2020).	 The	 autumn	 survey	
(7305	sampling	tows)	collected	14	species	of	schooling	forage	fish	
with >20	 occurrences:	 alewife,	 Atlantic	 thread	 herring	 (hereafter,	
thread	herring),	Atlantic	herring	(hereafter,	herring),	Atlantic	mack-
erel	(hereafter,	mackerel),	Atlantic	menhaden	(hereafter,	menhaden),	
Atlantic	saury	(hereafter,	saury),	bay	anchovy,	blueback	herring,	but-
terfish,	round	herring,	northern	sand	lance,	silver	anchovy,	Spanish	
sardine,	 and	 striped	 anchovy	 (see	Table 1	 for	 scientific	 names).	 In	
contrast,	the	spring	survey	(7225	tows)	only	collected	10	forage	fish	
species with >20	occurrences:	alewife,	herring,	mackerel,	menhaden,	
Atlantic	silverside	(hereafter,	silverside),	bay	anchovy,	blueback	her-
ring,	butterfish,	northern	sand	lance,	and	striped	anchovy	(Table 1).

Briefly,	we	describe	the	application	of	HMSC	to	the	NOAA	bot-
tom	trawl	data	(see	Ovaskainen	&	Abrego,	2020	for	a	complete	model	
description).	Independently	for	autumn	and	spring,	we	modeled	spe-
cies	occurrence	as	a	function	of	the	environmental	covariates	with	a	
probit	link	regression	mixed	model.	To	account	for	residual	variation	
not	explained	by	the	covariates,	we	specified	two	random	effects:	
(1)	a	tow-	level	random	effect	to	control	for	unexplained	variance	at	
the	sampling	level	and	(2)	a	temporally	explicit	random	effect	of	year,	
modeled	with	an	exponentially	decaying	covariance	structure,	to	ac-
count	for	annual	variation	in	occupancy.	The	residual	species	asso-
ciations	are	taken	from	the	species-	to-	species	variance–	covariance	
matrix	derived	via	the	random	effects	(Ovaskainen	&	Abrego,	2020).	
Due	to	strong	correlations	between	the	two	frontal	metrics	and	no	
a	priori	expectation	of	predictive	strength	 for	Fmean	versus	Fprob 
covariates,	 we	 ran	 two	 alternative	models	 for	 both	 seasons,	 sub-
stituting	the	two	Fmean	covariates	for	the	Fprob	versions.	The	au-
tumn	covariate	set	included	depth	(log),	rugosity,	sediment,	Chla,	Chl	
Fprob	(Fmean),	FSLE,	MLD,	salinity,	SST,	and	SST	Fprob	(Fmean).	The	
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spring	covariate	set	was	simplified	by	dropping	rugosity	to	achieve	
model	convergence	(Table 2).

We	fit	the	models	using	the	default	prior	distributions	(Ovaskainen	
&	 Abrego,	 2020)	 and	 sampled	 the	 posterior	 distribution	 with	 four	
Markov	Chain	Monte	Carlo	(MCMC)	chains	(see	Appendix 2: Table A1 
for	MCMC	sampling	parameters).	MCMC	convergence	was	examined	
visually	and	by	calculating	the	potential	scale	reduction	factors	(PSRF;	
i.e.,	R̂)	and	effective	sample	size	(ESS)	of	the	alpha	(spatial	scale	of	the	
temporal	random	effect),	beta	(fixed	effects),	and	omega	(species	as-
sociations	 per	 random	 effect)	 parameters	 (Brooks	&	Gelman,	 1998; 
Gelman	&	Rubin,	1992).	We	 considered	 the	model	 adequately	 con-
verged	if	the	mean	and	median	PSRF	values	for	the	alpha	(factor	1),	
beta,	and	omega	parameters	were	less	than	1.1	and	if	the	ESS	values	
were	more	than	400	(Appendix 2:	Figure	A1;	Vehtari	et	al.,	2021).

To	determine	the	best-	performing	model	(Fprob or Fmean	version)	
for	autumn	and	spring,	we	compared	the	Watanabe-	Akaike	Information	
Criterion	(WAIC)	scores	(Watanabe,	2013).	For	the	best	seasonal	mod-
els,	we	evaluated	the	explanatory	power,	predictive	accuracy,	and	con-
ditional	predictive	accuracy	by	computing	the	area	under	the	receiver	

operator	curve	(AUC;	Pearce	&	Ferrier,	2000).	Explanatory	power	was	
calculated	using	the	model	fitted	to	all	data	to	get	species-	specific	AUC	
values	and	a	summarized	mean	AUC.	For	predictive	accuracy,	we	per-
formed	a	threefold	cross-	validation	analysis,	randomly	assigning	each	
year	of	sampling	data	to	one	of	the	three	folds,	and	computing	predic-
tions	for	each	fold	(i.e.,	the	testing	data)	based	on	the	model	fitted	to	
the	remaining	two	folds	 (i.e.,	 the	training	data).	The	number	of	folds	
chosen	was	 in	keeping	with	best	practices	for	HMSC	analysis,	while	
allowing	 for	a	 reasonable	computational	 time	 frame.	For	conditional	
predictive	 accuracy,	 we	 conducted	 conditional	 cross-	validation	 to	
evaluate	 the	 importance	of	estimated	species	associations	 to	model	
predictions,	where	the	species-	to-	species	variance–	covariance	matrix	
is	employed	along	with	the	estimated	covariate	parameters	to	make	
predictions	(for	details	see	Ovaskainen	&	Abrego,	2020).	Finally,	to	as-
sess	 the	contributions	of	 the	 fixed	and	 random	covariates	 to	model	
fit,	we	partitioned	the	species-	specific	explained	variance	between	the	
environmental	covariates	and	each	of	the	random	effects.

2.4.2  |  Forage	fish	aggregation	models

Using	a	hierarchical	Bayesian	framework,	we	developed	a	model	to	
independently	estimate	abundance	and	size	of	FFA.	The	observed	
number	of	aggregations	(yij)	per	4 km	grid	cell	i	and	survey	j	generally	
followed	 a	 zero-	inflated	 negative	 binomial	 (ZINB)	 distribution	 due	
to	overdispersion.	We	parameterized	the	ZINB	using	a	zero-	inflated	
Poisson-	Gamma	mixture	formulation:

where �ij,	is	the	dispersion	parameter	and	zij	is	the	zero-	inflation	param-
eter,	which	models	the	realized	FFA	abundance,	given	the	presence	� ij ,	
following	a	Bernoulli	distribution.

We	 incorporated	 the	 season	 (sea1 = autumn,	 sea2 = spring,	
sea3 = winter)	of	survey	j	as	a	fixed	covariate	(categorical)	on	the	pa-
rameter	(� ij),	using	a	logit-	linear	link:

The	 log	of	expected	mean	abundance	 (�ij)	was	modeled	as	 the	
linear	predictor,	log

(

�ij
)

,	with	survey	effort	(eij)	added	as	an	offset:

We	modeled	the	linear	predictor	log
(

�ij
)

	as	a	log-	linear	equation	
with	a	spatial	random	effect	(u1 ijk)	at	the	32 km	grid	cell	(k)	scale	to	
account	 for	spatial	autocorrelation,	and	a	suite	 (n = 10)	of	environ-
mental	covariates	(l = 1,	2,	…	n; Table 2):

The	 spatial	 random	 effect	 (u1 ijk)	 was	 incorporated	 as	 a	 proper	
Gaussian	 conditional	 autoregressive	 (CAR)	 model	 (Banerjee	
et	al.,	2003;	Besag	et	al.,	1991)	that	accounts	for	spatial	dependence	
of	grid-	level	data.	The	CAR	model	follows	a	multivariate	normal	dis-
tribution	parameterized	in	terms	of	covariance:

where I	is	the	identity	matrix,	C	is	the	normalized	weight	matrix,	and	
M	is	the	diagonal	matrix	of	conditional	variances,	�CAR	is	the	precision	
scalar	and	γ	is	the	degree	of	spatial	dependence.

We	modeled	 the	 logged	observed	aggregation	size	 (log
(

sa
)

)	 for	
aggregation	a	as	a	Gaussian	distribution:

where �Sizea
	 is	the	mean	and	�Sizea	 is	the	variance	of	log

(

sa
)

. The esti-
mated	 aggregation	 size	 (�Sizea

)	was	modeled	 using	 a	 linear	 equation,	
incorporating	a	second	spatial	CAR	set	up	as	above	(u2ak)	as	a	random	
effect	and	the	same	suite	of	environmental	covariates	(l = 1,	2,	…	n):

For	 consistency	 and	 to	 facilitate	 comparisons,	 the	 FFA	 abun-
dance	and	size	models	were	fit	with	 the	SST	and	Chla Fprob	 fron-
tal	 metrics	 to	 match	 the	 best-	performing	 community	 model	 (see	
Section	3).	In	the	FFA	models,	we	chose	SST	seasonal	anomaly	and	
benthic	 position	 index	 (BPI),	 instead	 of	 SST	 and	 rugosity,	 respec-
tively,	due	to	multicollinearity	at	the	FFA	study	scale.

(1)yij ∼ Poisson
(

�ij�ijzij
)

(2)�ij∼Gamma(r, r)

(3)zij
∼Bernoulli

(

� ij

)

,

(4)logit
(

� ij

)

=�1+�sea1xsea1ij +�sea2xsea2ij +�sea3xsea3ij .

(5)log
(

�ij
)

= log
(

�ij
)

+eij.

(6)log
(

�ij
)

= u1 ijk + �1xDepth (log) ij
+ �2xBPIij + �3xSedimentij + �4xChlaij + �5xFSLEij + �6xSalinityij + �7xMLDij + �8xSST_Fprobij + �9xChl_Fprobij + �10xSST_anomalyij.

(7)u1 ijk
∼MVN

(

�CAR,
1

�CAR
(I−�C)−1M

)

,

(8)log
(

sa
)

∼Gaussian
(

�Sizea
, �Sizea

)

,

(9)�Sizea
=u2ak+

(

∑n

l=1
�Sizelxal

)

.
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We	used	the	R	package	NIMBLE	(version	0.12.2,	r-nimble.org,	de	
Valpine	et	al.,	2017)	to	specify	the	FFA	models	and	run	the	MCMC	
simulations.	Three	chains	were	sampled	for	400,000	iterations	each	
with	 250,000	 iterations	 discarded	 as	 burn-	in	 and	 thinned	 by	 20,	
giving	7500	posterior	samples	per	chain.	As	with	the	HMSC	mod-
els,	chain	convergence	was	assessed	visually	and	using	the	PSRFs.	
Priors	were	selected	to	be	minimally	informative	to	achieve	conver-
gence	of	the	MCMC	algorithm.	For	additional	information	on	model	
specification,	 see	 https://github.com/cgoet	sch/Forage_Fish_Aggre	
gation_Models.

To	evaluate	model	fit,	we	conducted	a	posterior	predictive	check	
of	both	the	abundance	and	size	models	 (Gelman	et	al.,	2013;	Kery	
&	 Royle,	 2016),	 calculating	 the	 Chi-	square	 discrepancy	 measure	
(Freeman-	Tukey	Goodness-	of-	Fit)	 and	 the	Bayesian	p-	values.	As	 a	
measure	of	 explanatory	power,	we	calculated	 the	 correlations	be-
tween	the	observed	data	and	predictions	from	the	model	fit	 to	all	
data.	To	assess	internal	model	consistency	and	predictive	accuracy,	
we	conducted	a	fivefold	cross-	validation	with	the	data	randomly	as-
signed	to	folds.	The	correlation	between	observed	data	and	model	
predictions	 (in-	sample	 and	 out-	of-	sample)	was	 calculated	 for	 each	
fold	 and	 summarized	 (mean ± standard	 deviation)	 across	 the	 five	
folds.	Pearson	correlation	was	used	 for	 the	abundance	model	and	
Spearman	correlation	was	used	for	the	size	model	to	account	for	a	
few	extreme	outliers	in	the	predictions.

2.5  |  Model predictions

2.5.1  |  Forage	fish	community	models

To	identify	the	important	environmental	drivers	of	forage	fish	com-
munity	occupancy	for	each	season	 (autumn	and	spring),	we	calcu-
lated	the	mean	estimates	of	the	beta	parameters	(fixed	effects)	with	
significant	drivers	defined	as	those	with	at	least	95%	posterior	prob-
ability.	We	summarized	the	beta	parameters,	calculating	 the	mean	
absolute	 parameter	 values	 (hereafter,	 effect	 size)	 to	 evaluate	 the	
overall	covariate	relationship	strength.	We	also	predicted	seasonal	
species-	specific	occurrence	probability	over	the	4 km	grid	expanded	
to	encompass	the	NES	study	area,	using	the	seasonal	means	of	the	
environmental	covariates.	From	the	predicted	occurrence	probabili-
ties,	we	identified	distinct	community	types	within	each	season	using	
k-	means	 cluster	 analysis	 to	 classify	 species	 composition	 patterns	
over	space	(kmeans	in	stats	package;	Foster	et	al.,	2013;	Ovaskainen	
&	 Abrego,	2020).	We	 determined	 the	 optimal	 number	 of	 clusters	
using	the	elbow	method	(NbClust	package,	Charrad	et	al.,	2014)	and	
calculated	the	prevalence	(i.e.,	mean	occurrence	probability)	of	each	
species	within	 the	 community	 types.	We	 also	 calculated	 the	 sea-
sonal	species	richness	(i.e.,	summed	multispecies	probability	of	oc-
currence	per	grid	cell)	across	the	NES	study	area	and	the	FFA	study	
area	and	calculated	the	species	richness	mean ± standard	deviation	
for	each	community	type	by	season	for	both	study	areas.

2.5.2  |  Forage	fish	aggregation	models

To	determine	which	covariates	were	important	drivers	of	FFA	abun-
dance	 and	 size,	we	 calculated	 the	median	 and	95%	credible	 inter-
vals	(CI)	of	the	fixed	effects	for	each	model.	We	evaluated	how	the	
most	 important	 environmental	 drivers	 influenced	 FFA	 abundance	
and	size	by	calculating	predictions	across	an	environmental	gradient	
(i.e.,	the	maximum	and	minimum	values	of	those	covariates	from	the	
observed	data).	We	also	made	seasonal	(autumn,	winter,	spring,	sum-
mer)	predictions	of	abundance,	size,	and	surface	availability	(abun-
dance × size)	 over	 the	 4 km	 FFA	 grid,	 using	 the	 seasonal	means	 of	
the	environmental	covariates	over	our	study	period.	In	addition,	we	
calculated	the	FFA	abundance	(mean ± standard	deviation)	and	FFA	
density	 (FFA/km2)	per	community	 type	 (as	defined	 from	the	com-
munity	models)	within	the	FFA	study	area	for	autumn	and	spring.

3  |  RESULTS

During	 the	 aerial	 digital	 survey	 study	 period	 (2012–	2019),	 there	
were	 a	 total	 of	 21,934	 surface	 FFAs	 (New	 York	 project:	 14,288,	
Mid-	Atlantic	 project:	 7646)	 observed	 in	 the	 combined	 FFA	 study	
area	(Figure 1a).	Of	these,	most	FFAs	were	observed	in	the	summer	
(16,667)	and	 the	autumn	 (5085)	compared	 to	 the	spring	 (175)	and	
winter	 (7).	 The	 size	of	 aggregations	 ranged	 from	0.5	 to	8651.2 m2 
with	a	mean	size	of	96.5 m2.

3.1  |  Model performance

3.1.1  |  Forage	fish	community	models

For	both	seasons,	the	Fprob	model	was	a	marginally	better	fit	than	the	
Fmean	model	as	evaluated	by	the	WAIC	scores	(Table 3);	thus,	further	
discussion	 of	 the	 Fmean	 models	 is	 not	 presented.	 The	 autumn	 and	
spring	Fprob	models	 showed	a	good	 fit	 to	 the	data	with	mean	AUC	
scores	of	explanatory	power	of	>0.93	for	both	(Table 3).	Overall,	the	
autumn	Fprob	model	had	high	predictive	accuracy	with	a	0.882	mean	
cross-	validated	AUC,	while	the	spring	model	had	lower	predictive	ac-
curacy	with	a	mean	cross-	validated	AUC	of	0.795.	The	species-	specific	
predictive	 accuracy	 for	 autumn	 ranged	 from	0.761	 for	 butterfish	 to	
0.955	 for	 thread	 herring	 (Table 3).	 The	 predictive	 accuracy	 of	 indi-
vidual	species	in	the	spring	had	greater	variation;	AUC	scores	ranged	
from	0.577	(mackerel)	to	0.940	(silverside;	Table 3).	As	with	the	autumn	
models,	all	species	in	the	spring	had	acceptable	fit.	Including	species	
associations	marginally	 increased	conditional	predictive	accuracy	for	
autumn	(mean	AUC:	0.892,	species-	specific	AUC	range:	0.764–	0.971;	
Table 3).	For	the	spring	models,	including	species	associations	greatly	
improved	 predictive	 accuracy	 (mean	 conditional	 AUC:	 0.844	 and	
species-	specific	AUC:	0.723–	0.939)	with	the	greatest	 increases	seen	
for	species	with	low	initial	predictive	accuracy.

http://r-nimble.org
https://github.com/cgoetsch/Forage_Fish_Aggregation_Models
https://github.com/cgoetsch/Forage_Fish_Aggregation_Models
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3.1.2  |  Forage	fish	aggregation	models

The	posterior	predictive	check	showed	appropriate	model	specifica-
tion	for	both	the	abundance	and	size	models	with	Bayesian	p-	values	of	
.31	and	.35,	respectively	(Table 4; Appendix 2:	Figure	A2).	The	explana-
tory	power,	as	calculated	from	the	correlations	between	the	observed	
and	predicted	values	for	the	full	model,	indicated	an	adequate	fit	for	
the	abundance	model	(0.23	correlation)	and	a	good	fit	for	size	model	
(0.59).	Correlations	were	also	consistent	across	 the	 in-	sample	cross-	
validation	for	both	models	(abundance:	0.23 ± 0.002;	size:	0.59 ± 0.008;	
Table 4).	 The	 out-	of-	sample	 predictive	 accuracy	 (Table 4)	 was	 simi-
lar	 to	 the	explanatory	power	 for	both	abundance	 (0.22 ± 0.007)	and	
size	 (0.49 ± 0.08)	models,	also	showing	consistency	across	folds.	The	

primary	aim	of	the	FFA	model	was	to	conduct	inference	with	predic-
tion	as	a	secondary	priority;	model	performance	meets	that	goal.	The	
lower	out-	of-	sample	predictive	accuracy	suggests	that	extrapolations	
from	this	model	would	have	less	value	than	within-	sample	prediction.

3.2  |  Environmental drivers

For	 the	 community	 models,	 the	 environmental	 covariates	 ac-
counted	for	most	of	the	explained	variance	 (autumn	mean:	75.0%;	
spring	mean:	62.6%),	followed	by	the	tow-	level	random	effect	(au-
tumn	mean:	15.4%;	 spring	mean:	27.8%)	and	 temporal	 random	ef-
fect	(mean:	9.6%	for	both).	Within	the	fixed	covariates,	the	dynamic	

Model Species WAIC
Explanatory 
power

Predictive 
accuracy

Conditional 
predictive 
accuracy

Autumn	Fprob - 2.305 0.949 0.882 0.892

alewif 0.986 0.927 0.945

atherr 0.989 0.955 0.971

atlher 0.971 0.942 0.946

atlmac 0.949 0.845 0.866

atlmen 0.964 0.920 0.927

atsaur 0.891 0.795 0.796

bayanc 0.985 0.945 0.954

bluher 0.989 0.923 0.954

butter 0.886 0.761 0.777

rherri 0.893 0.814 0.804

sandla 0.855 0.766 0.764

silanc 0.953 0.854 0.863

spsard 0.981 0.946 0.959

stranc 0.992 0.954 0.966

Autumn	Fmean - 2.307 - - - 

Spring	Fprob - 2.659 0.937 0.795 0.844

alewif 0.944 0.723 0.802

atlher 0.929 0.634 0.776

atlmac 1.000 0.577 0.723

atlmen 0.921 0.900 0.902

atlsil 0.949 0.940 0.939

bayanc 0.947 0.934 0.935

bluher 0.986 0.701 0.805

butter 0.873 0.825 0.830

sandla 0.853 0.801 0.808

stranc 0.971 0.917 0.917

Spring	Fmean - 2.663 - - - 

Note:	The	mean	and	species-	specific	AUC	scores	for	explanatory	power	(model	fitted	with	all	data),	
predictive	accuracy	(threefold	cross-	validation),	and	conditional	predictive	accuracy	(conditional	
cross-	validation)	are	provided	for	the	best-	performing	model	of	each	season.
Abbreviations:	AUC,	area	under	the	receiver	operator	curve;	Fmean,	indicates	model	including	the	
Chl	and	SST	Fmean covariates; Fprob,	indicates	model	including	the	Chl	and	SST	Fprob covariates; 
WAIC,	Watanabe-	Akaike	information	criterion.

TA B L E  3 Fit	statistics	and	cross-	
validation	results	for	the	forage	fish	
community	models.
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surface	covariates	were	the	most	explanatory	in	the	autumn	(41.6%),	
followed	 by	 the	 static	 covariates	 (31.0%),	 while	 in	 the	 spring	 the	
static	 covariates	 (31.2%)	 and	 dynamic	 surface	 covariates	 (29.7%)	
were	similarly	explanatory.

Important	drivers	for	most	of	the	community	across	both	seasons	
were	the	static	habitat	 feature	depth	 (autumn:	all	spp.;	spring:	8	of	
10	spp)	and	the	dynamic	surface	feature	SST	(autumn:	13	of	14	spp;	

spring;	all	spp;	Figure 2).	In	autumn,	depth	had	the	third	highest	effect	
size	 (0.80;	Appendix 2: Table A2a),	while	SST	only	had	a	moderate	
effect	 size	 (0.24).	All	 species,	except	herring	and	saury,	had	a	neg-
ative	relationship	with	depth,	so	as	depth	 increased	the	probability	
of	 occurrence	 decreased	 (Figure 2a).	 In	 autumn,	 the	 probability	 of	
occurrence	increased	as	SST	became	warmer	for	seven	species	and	
decreased	with	warmer	 SST	 for	 six	 species;	 only	menhaden	 had	 a	

Model Bvp
Explanatory 
power

In- sample predictive 
accuracy (mean ± SD)

Out- of- sample 
predictive accuracy 
(mean ± SD)

Abundance 0.31 0.23 0.23 ± 0.002 0.22 ± 0.007

Size 0.35 0.59 0.59 ± 0.008 0.49 ± 0.08

Note:	Abundance	and	size	models	were	evaluated	using	a	posterior	predictive	check	with	a	
Freeman–	Tukey	Goodness-	of-	Fit	test,	giving	the	Bayesian	p-	value	(bpv).	The	correlation	between	
observed	data	and	model	estimates	was	calculated	as	a	measure	of	explanatory	power	(full	model)	
and	predictive	power	(fivefold	cross-	validation:	in-	sample	and	out-	of-	sample).	Pearson	correlation	
was	used	for	the	abundance	model,	while	Spearman	was	used	for	the	size	model	due	to	a	few	
extreme	outliers	in	model	estimates.

TA B L E  4 Fit	statistics	and	cross	
validation	results	for	the	forage	fish	
aggregation	(FFA)	models.

F I G U R E  2 Beta	parameter	estimates	for	the	(a)	autumn	and	(b)	spring	community	models.	Orange	and	blue	grid	squares	represent	a	
significant	relationship	(either	positive	or	negative,	respectively)	between	the	probability	of	occupancy	and	each	environmental	covariate.	
White	grid	cells	represent	non-	significant	relationships.	Beta	parameters	were	considered	significant	if	they	had	at	least	95%	posterior	
support.	The	top	panels	depict	the	community-	level	covariate	effect	size,	calculated	as	the	mean	absolute	parameter	values.
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non-	significant	relationship	with	SST	(Figure 2a).	In	spring,	depth	had	
a	 lower	effect	 size	 (0.44),	 and	all	 significant	 species	except	alewife	
had	decreased	probability	of	occurrence	with	increasing	depth.	The	
probability	of	occurrence	 increased	with	warmer	SST	 for	only	 four	
species	 in	 the	 spring	 (Figure 2b),	 while	 occurrence	 probability	 de-
creased	with	warmer	SST	for	the	remainder.	For	both	seasons,	MLD	
(i.e.,	mixed	layer	depth,	an	indicator	of	seasonal	stratification)	had	the	
lowest	effect	size	(0.02	and	0.01	for	autumn	and	spring,	respectively;	
Appendix 2: Table A2)	but	was	still	a	significant	driver	for	part	of	the	
community	(autumn:	9	of	14	spp;	spring:	5	of	10	spp;	Figure 2).

In	autumn,	 the	dynamic	surface	 features,	FSLE	 (i.e.,	presence	
of	submesoscale	eddies	and	filaments)	and	Chl	Fprob	(i.e.,	produc-
tivity	front	persistence)	had	the	highest	effect	size	(1.87	and	0.96,	
respectively,	 Appendix 2: Table A2a)	 but	 were	 only	 significant	
drivers	of	occurrence	 for	about	half	 the	community	 (7	 spp	each;	
Figure 2a).	In	the	spring,	the	covariates	with	the	highest	effect	size	
were	FSLE	(3.49)	and	SST	Fprob	(0.69;	Figure 2b	and	Appendix 2: 
Table A2b).	While	 FSLE	was	 significant	 for	 seven	 species	 during	
spring,	 SST	 Fprob	 was	 only	 a	 significant	 driver	 for	 five	 species	
(Figure 2b).	 For	 most	 species,	 FSLE	 had	 a	 positive	 relationship	

F I G U R E  3 (a)	Beta	parameter	estimates	and	credible	intervals	(CIs)	from	the	forage	fish	aggregation	(FFA)	abundance	model.	Gray	points	
represent	the	parameter	medians,	thick	lines	the	50%	CI,	and	thin	lines	the	95%	CI.	Parameters	with	gray	CIs	are	not	significant.	(b–	f)	FFA	
abundance	predictions	relative	to	the	five	strongest	beta	parameters.	Shaded	areas	represent	the	95%	CI	of	the	estimate.
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with	the	probability	of	occurrence;	only	two	species	in	the	autumn	
(saury	and	silver	anchovy)	and	one	in	the	spring	(butterfish)	were	
negatively	associated	with	FSLE.	Chl	Fprob	had	a	mostly	positive	
relationship	with	occurrence	(5	of	7	spp);	only	alewife	and	mack-
erel	 showed	 the	 opposite	 relationship	 (Figure 2a).	 In	 the	 spring,	
SST	Fprob	 had	a	mostly	negative	 relationship	with	occurrence	 (4	
of	5	spp;	Figure 2b).

In	 both	 the	 FFA	 abundance	 and	 size	 models,	 the	 majority	 of	
environmental	 covariates	 had	 statistically	 significant	 effects	 (i.e.,	
95%	CIs	 did	 not	 contain	 0;	 Figures 3	 and	4).	 The	most	 important	

covariates	for	estimating	abundance	were	MLD,	depth,	salinity,	SST	
anomaly,	 and	 Chla	 (Figure 3).	 As	MLD	 and	 depth	 decreased,	 FFA	
abundance	increased.	Conversely,	as	salinity,	SST	anomaly,	and	Chla 
increased,	so	did	FFA	abundance.	Although	Chla had the lowest ab-
solute	 parameter	 estimate	 of	 these	 five	 covariates,	 the	 predicted	
median	abundance	across	the	range	of	Chla	 in	the	study	area	was	
two	orders	of	magnitude	higher	than	median	abundance	across	the	
range	of	depth,	and	four	orders	of	magnitude	higher	than	for	MLD,	
salinity,	and	SST	anomaly.	Only	Chl	Fprob	and	FSLE	were	not	signif-
icant	for	abundance.

F I G U R E  4 (a)	Beta	parameter	estimates	and	credible	intervals	(CI)	from	the	forage	fish	aggregation	(FFA)	size	model.	Points	represent	the	
parameter	medians,	thick	lines	the	50%	CI,	and	thin	lines	the	95%	CI.	The	inset	(gray	box)	enlarges	the	scale	for	parameters	close	to	zero	to	
improve	readability.	Parameters	with	gray	CIs	are	not	significant.	(b–	d)	FFA	size	predictions	relative	to	the	three	strongest	beta	parameters.	
Shaded	areas	represent	the	95%	CI	of	the	estimate.
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The	most	important	covariates	for	estimating	FFA	size	were	BPI,	
depth,	and	MLD	(Figure 4).	BPI	had	a	strong	negative	effect	on	es-
timated	FFA	size	but	was	most	 influential	 in	the	−80	to	−40	range	
which	corresponds	 to	steep	crevasses	or	valleys.	Higher	values	of	
BPI	 corresponding	 to	 bathymetric	 flats	 (near	 0)	 and	 steep	 hills	 or	
peaks	 (>1),	 were	 associated	with	 very	 low	 FFA	 size.	 As	 depth	 in-
creased,	the	estimated	size	of	aggregations	decreased.	MLD	had	op-
posite	effects	on	abundance	versus	size:	as	MLD	increased	(i.e.,	the	
water	column	became	less	stratified),	there	were	fewer,	but	larger,	
FFAs.	SST	anomaly	was	the	only	non-	significant	covariate	for	aggre-
gation	size.

3.3  |  Spatial and seasonal patterns

The	 predicted	 species	 richness	 (i.e.,	 summed	 occupancy)	 from	
the	community	models	was	highest	nearshore	and	in	the	Gulf	of	
Maine	in	the	autumn;	in	spring,	species	richness	was	lower	overall	
and	less	variable	across	the	study	area	(Figure 5).	In	general,	the	
predicted	occurrence	distributions	of	forage	fishes	in	autumn,	ex-
cept	for	butterfish,	were	more	concentrated	either	nearshore	or	
in	the	Gulf	of	Maine	(Figure 6).	Conversely,	the	spring-	predicted	
occurrence	 distributions	 were	 more	 diffused	 across	 the	 shelf	
(Figure 7).

F I G U R E  5 Forage	fish	community	
species	richness	for	(a,	c)	autumn	and	(b,	
d)	spring	across	the	Northeast	Continental	
Shelf	(NES)	study	area.	Black	outlines	(a,	b)	
delineate	the	forage	fish	aggregation	(FFA)	
study	area.	The	bottom	panels	enlarge	
the	FFA	study	area.	Species	richness	was	
calculated	as	the	summed	probability	
of	occurrence	across	all	species.	Note	
that	the	scales	for	autumn	and	spring	
differ	due	to	differences	in	the	maximum	
species	richness	possible	for	each	season.
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The	 FFA	 abundance	 model	 predicted	 the	 highest	 number	 of	
aggregations	 in	 the	 nearshore	 areas	 off	 the	 coasts	 of	 Delaware,	
Maryland,	and	Virginia,	known	as	the	Delmarva	Peninsula	and	the	
southwestern	end	of	Long	Island	(Figure 8).	The	areas	of	high	FFA	
abundance	were	similar	across	all	seasons,	while	the	magnitude	of	
abundance	varied	from	highest	in	the	summer	to	lowest	in	the	win-
ter.	Across	the	mid-	to-	outer	shelf	in	the	FFA	study	area,	there	were	
consistently	low	counts	(1–	10)	of	FFAs	even	during	the	summer,	and	
almost	no	FFAs	predicted	in	those	areas	during	the	winter.	Autumn	
had	a	higher	abundance	of	predicted	FFAs	than	spring,	particularly	
nearshore.

In	 general,	 the	 predicted	 size	 of	 aggregations	 was	 more	 spa-
tially	 uniform	 than	 abundance,	 with	 smaller	 FFAs	 predicted	 near	
the	continental	shelf	break.	The	predicted	size	of	aggregations	was	
larger	 in	 the	 winter	 than	 in	 the	 other	 seasons,	 corresponding	 to	
less	shelf	stratification	 (i.e.,	deeper	MLD).	Since	the	predicted	size	
was	fairly	constant	across	much	of	the	shelf,	 the	surface	availabil-
ity	(abundance × size)	followed	similar	spatial	patterns	to	that	of	FFA	
abundance.

3.4  |  Forage fish community types

From the k-	means	 cluster	 analysis	 of	 the	 community	occupancy	
predictions,	 we	 found	 six	 distinct	 forage	 fish	 community	 types	
in	 the	NES	 study	 area	 for	 both	 seasons	 (Figures 9	 and	10).	 The	
community	 types	 roughly	 correspond	 with	 broadscale	 features	
across	the	NES.	For	both	seasons,	Community	Type	1	 is	 located	
nearshore,	particularly	 in	 the	New	York	and	Mid-	Atlantic	Bights	
but	also	 in	a	few	areas	 in	the	coastal	Gulf	of	Maine.	Community	
Types	2	and	3	represent	the	Gulf	of	Maine	Coastal	Current	and	the	
Gulf	of	Maine	Basins	areas,	respectively,	although	the	spatial	ex-
tent	varies	between	seasons.	Moreover,	in	the	spring,	Community	
Type	2	 also	 appears	 in	 the	New	York	Bight.	Community	Type	4	
covers	 the	 Nantucket	 Shoals	 and	 Georges	 Banks	 areas	 in	 both	
seasons;	 however,	 in	 spring,	 this	 community	 type	 also	 includes	
a	 strip	 of	 the	 inner	 continental	 shelf	 across	 the	 New	 York	 and	
Mid-	Atlantic	 Bights.	 In	 the	 autumn,	 Community	 Type	 5	 encom-
passes	 most	 of	 the	 continental	 shelf	 across	 the	 New	 York	 and	
Mid-	Atlantic	Bights;	while,	in	the	spring,	it	only	covers	the	outer	
shelf.	Community	Type	6	covers	the	area	of	the	continental	slope	
in	both	seasons.

For	both	seasons,	Community	Type	1	had	the	highest	mean	spe-
cies	richness	(autumn:	5.79;	spring:	3.37;	Table 5)	with	12	of	14	spe-
cies	in	the	autumn	and	9	of	10	species	in	the	spring	having	prevalence	
>10%	(Figures 9	and	10,	Appendix 2: Table A3).	Community	Type	2	
had	the	second	highest	species	richness	(autumn:	2.41;	spring:	1.56;	
Table 5).	Herring	dominated	Communities	2	 and	3	 in	 the	 autumn,	
while	in	the	spring,	alewife	was	more	prevalent.	Community	Types	4	
and	5	were	butterfish-	dominated	in	the	autumn	(Figure 9);	whereas	
in	the	spring,	Community	Type	4	was	not	dominated	by	any	species	
and	Community	Type	5	remained	butterfish-	dominated	(Figure 10).	
During	 the	 autumn,	 Community	 Type	 6	 had	 the	 lowest	 species	

richness	 (0.28)	with	most	 forage	 fish	 species	 uncommon;	while	 in	
the	spring,	Community	Type	5	had	the	lowest	species	richness	(1.03)	
and	was	butterfish-	dominated.

Within	 the	FFA	study	area,	 four	community	 types	were	repre-
sented	in	the	autumn,	while	during	the	spring,	five	were	represented	
(Figures 9	and	10,	Table 5).	In	both	seasons,	Community	Type	1	had	
the	highest	FFA	abundance	(autumn:	14,441.17;	spring:	634.72)	and	
density	(autumn:	1917.49/km2;	spring:	59.09/km2),	Community	Type	
4	had	second	highest	FFA	abundance	(autumn:	132.11;	spring:	11.20)	
and	density	 (autumn:	9.11/km2;	spring:	0.70/km2),	and	Community	
Type	6	had	the	lowest	for	both	(Table 5).

3.5  |  Species co- occurrence

Species	co-	occurrence	patterns,	representing	the	residual	species-	
to-	species	 associations	 from	 the	 random	 effects,	 showed	 corre-
lations	 among	 species	 both	 temporally	 and	 by	 tow	 (Appendix 2: 
Figure	A3).	In	the	autumn,	the	temporal	associations	indicated	that	
two	groups	of	forage	fishes	fluctuate	with	each	other	over	annual	
scales	(Appendix 2:	Figure	A3a):	(1)	blueback	herring,	saury,	alewife,	
thread	herring,	menhaden,	mackerel,	and	herring;	and	(2)	silver	an-
chovy	and	Spanish	sardine.	Tow-	level	associations	in	the	fall	showed	
complex	 co-	occurrence	 patterns	 (Appendix 2:	 Figure	 A3b).	 In	 the	
spring,	 there	 were	 few	 significant	 temporal	 or	 tow	 associations	
(Appendix 2:	Figure	A3c,d).

4  |  DISCUSSION

The	community	and	aggregation	patterns	we	found	for	NES	forage	
fishes	help	fill	an	existing	knowledge	gap	on	oceanographic	drivers	
and	distribution	of	surface	prey	availability	 for	upper	 trophic-	level	
marine	predators	in	this	ecosystem.	Our	community	models	identi-
fied	potential	hotspots	of	prey	availability	across	the	NES	via	species	
richness	estimates,	which	overlapped	spatially	with	areas	of	high	FFA	
abundance	 in	 the	New	York	 and	Mid-	Atlantic	Bights.	 Examination	
of	the	patterns	across	the	community	and	FFA	models	led	to	three	
cross-	cutting	conclusions:	(1)	forage	fish	community	models	and	FFA	
distributions	 indicate	 spatial	overlap	of	hotspots,	 (2)	 static	habitat	
features	were	 important	 to	 both	 community	 and	 FFA	 distribution	
patterns,	and	 (3)	dynamic	surface	 features	were	 important	drivers	
of	community	occupancy,	while	subsurface	features	were	more	im-
portant	to	FFAs.

4.1  |  Spatiotemporal patterns in forage fish 
availability

The	predicted	distribution	of	FFAs	likely	represents	a	more	appro-
priate	estimation	of	prey	availability	for	surface-	feeding	predators,	
since	 modeling	 surface	 aggregations	 incorporates	 a	 measure	 of	
patchiness	 driven	 by	 schooling	 behavior	 and	 vertical	 accessibility.	
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F I G U R E  6 Autumn	community	model	predictions	of	forage	fish	occurrence,	based	on	bottom	trawl	data.	Species	codes	are	defined	in	Table 1.
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F I G U R E  7 Spring	community	model	predictions	of	forage	fish	occurrence,	based	on	bottom	trawl	data.	Species	codes	are	defined	in	
Table 1.
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Although	spatially	 limited	to	 the	Mid-	Atlantic	and	New	York	Bight	
regions,	 our	 FFA	 models	 indicate	 increased	 abundance	 and	 total	
availability	of	surface	FFAs	in	the	nearshore	areas	off	the	southern	
coast	of	Long	 Island	and	 the	Delmarva	Peninsula,	with	FFA	abun-
dance	declining	across	the	shelf	to	the	continental	slope.	This	result	
is	consistent	with	abundance	distributions	of	forage	fishes'	primary	
zooplankton	 prey,	 such	 as	 Pseudocalanus	 spp,	 Temora longicornus,	
and	 Centropages typicus	 (Kane	 &	 Prezioso,	 2008;	 Suca,	 Deroba,	
et	al.,	2021),	distributions	of	predators	(Bangley	et	al.,	2020;	Goyert	
et	al.,	2018;	Roberts	et	al.,	2016),	and	commercial	fishing	effort	for	
some	of	these	forage	fishes,	which	often	target	large	surface	schools	
(VMS	Commercial	Fishing	Density	Data,	www.north	easto	ceand	ata.
org;	SEDAR,	2015).

Moreover,	 we	 found	 that	 areas	 of	 high	 predicted	 FFA	 abun-
dance	coincide	with	areas	of	high	predicted	species	 richness	 from	
the	 forage	 fish	 community	models.	 In	 contrast,	 areas	 of	 high	 FFA	
abundance,	or	surface	prey	availability,	do	not	always	correlate	with	
areas	of	high	 individual	species	occupancy.	Based	on	this	relation-
ship,	we	would	also	expect	high	abundance	of	FFA	in	areas	of	high	
species	richness	in	the	NES	outside	the	FFA	study	area	(i.e.,	the	Gulf	
of	Maine,	Nantucket	Shoals,	and	Georges	Banks).	While	we	currently	
lack	empirical	data	on	FFA	in	these	areas,	they	are	known	for	high	
productivity	 and	as	 important	 foraging	areas	 for	marine	mammals	
and	seabirds	(Overholtz	et	al.,	2007),	suggesting	that	further	study	
of	the	spatiotemporal	patterns	of	FFA	in	these	areas	would	inform	
our	understanding	of	predator	distributions	and	behaviors.

F I G U R E  8 Predicted	spatial	distribution	of	forage	fish	aggregation	(FFA)	abundance,	size,	and	surface	availability	(abundance × size,	
cumulative	m2).	The	spatial	extent	of	the	size	and	availability	predictions	has	been	reduced	to	only	include	on-	shelf	areas.

http://www.northeastoceandata.org
http://www.northeastoceandata.org
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4.2  |  Joint species distribution models reveal 
forage fish community dynamics

Forage	fish	aggregation	composition	from	aerial	digital	survey	data	
cannot	be	identified	to	the	species	level,	but	the	community	models	
provide	 insight	 into	which	forage	fish	species	 likely	compose	FFAs	
across	space.	In	the	New	York	Bight	in	the	spring,	the	area	with	the	

highest	estimated	abundance	of	FFAs	overlapped	with	Community	
Type	1	of	the	community	model.	We	can	 infer	that	there	 is	a	high	
likelihood	of	spring	FFAs	 in	 this	area	being	composed	of	blueback	
herring,	bay	anchovy,	herring,	or	menhaden,	with	lower	probabilities	
for	other	species	in	Community	Type	1.	In	contrast,	during	the	au-
tumn	in	the	same	area,	our	models	indicate	there	is	a	high	likelihood	
that	FFAs	would	be	composed	of	butterfish	or	bay	anchovy.	More	

F I G U R E  9 Autumn	forage	fish	community	types:	six	distinct	forage	fish	community	types	were	identified	across	the	NES	study	area	via	
k-	means	cluster	analysis.	Circular	bar	plots	depict	the	prevalence	(i.e.,	mean	occurrence	probability)	of	species	within	the	community	type	
(y-	scale	max = 1).	Species	codes	are	defined	in	Table 1.	Species	with	a	prevalence	<0.003	are	not	shown.	Black	outlines	define	the	forage	fish	
aggregation	(FFA)	study	area.	See	Appendix 2: Table A3a	for	prevalence	estimations.	NES	–		U.S.	Northeast	Continental	Shelf.
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research	 is	 needed	 on	 the	 species	 composition	 of	 FFAs	 in	 these	
areas	over	time	to	validate	these	model	predictions.

The	 residual	 species	 associations	 from	 the	 forage	 fish	 com-
munity	 models	 provide	 information	 on	 the	 potential	 for	 species	
interactions	 among	 forage	 fishes	 (i.e.,	 intraguild	 interactions),	
showing	patterns	of	 co-	occurrence	across	years	or	 tows	 that	are	

not	 explained	 by	 the	 species'	 respective	 environmental	 niches.	
Given	 the	 high	 conditional	 model	 fit,	 especially	 for	 the	 autumn	
community	model,	 it	 is	possible	 that	 the	 temporal	 and	 tow	asso-
ciations	 identified	 represent	 true	 species	 interactions.	 The	 tem-
poral	associations	indicate	that	groups	of	species	are	either	linked	
(positive	associations)	or	asynchronous	(negative)	over	time,	driven	

F I G U R E  1 0 Spring	forage	fish	community	types:	six	distinct	community	types	were	identified	across	the	NES	study	area	via	k-	means	
cluster	analysis.	Circular	bar	plots	depict	the	prevalence	(i.e.,	mean	occurrence	probability)	of	species	within	the	community	type	(y- scale 
max = 1).	Species	codes	are	defined	in	Table 1.	Species	with	a	prevalence	<0.003	are	not	shown.	Black	outlines	define	the	forage	fish	
aggregation	study	area.	See	Appendix 2: Table A3b	for	prevalence	estimations.	NES	–		U.S.	Northeast	Continental	Shelf.
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by	long-	term	processes	or	behaviors	for	which	our	models	do	not	
account.	The	tow-	level	associations	may	indicate	species	that	are	
spatially	associated	with	each	other,	such	as	herring,	alewife,	and	
blueback	 herring,	which	 form	 large,	multispecies	 schools	 for	 for-
aging	(Turner	et	al.,	2016).	However,	there	is	a	paucity	of	data	on	
forage	 fish	 behavior	 in	 the	NES	ecosystem,	 and	much	 is	 still	 un-
known	about	interspecies	interactions	within	this	community.	We	
must	exercise	caution	when	inferring	species	interactions	based	on	
residual	associations,	since	they	could	also	indicate	that	our	models	
are	missing	 environmental	 covariates	 that	 could	 explain	 some	 of	
this	residual	covariance.	The	potential	existence	of	intraguild	inter-
actions	suggested	by	our	study	indicates	a	need	for	more	research	
to	 elucidate	 these	 relationships	 within	 the	 forage	 fish	 commu-
nity,	especially	given	evidence	of	asymmetrical	distribution	shifts	
of	 species	 in	 the	NES	due	 to	climate-	induced	warming	 (Friedland	
et	al.,	2020;	Hare	et	al.,	2016;	Kleisner	et	al.,	2017).	A	better	under-
standing	of	intraguild	interactions,	particularly	regarding	behaviors	
influencing	the	formation	and	composition	of	surface	FFAs,	could	
allow	for	more	accurate	estimations	of	FFA	distribution	and	prey	
availability	to	predators	across	space	and	time.

4.3  |  Oceanographic drivers of forage fishes

4.3.1  |  Community	distribution

Submesoscale	 filaments	 (FSLE)	 and	 front	 persistence	 (Fprob;	 au-
tumn:	 productivity;	 spring:	 SST),	 both	 dynamic	 surface	 features,	
were	 the	 most	 important	 environmental	 drivers	 for	 community	
distribution	 across	 seasons,	 but	 only	 for	 a	 subset	 of	 species.	
Convergent	 submesoscale	 (~10 km)	 eddy	 and	 filament	 structures	

aggregate	 phyto-		 and	 zooplankton	 along	 their	 ridges	 or	 frontal	
edges	(i.e.,	areas	of	high	FSLE	values;	d'Ovidio	et	al.,	2010;	Smeti	
et	al.,	2015),	attracting	forage	fishes	to	abundant	prey	resources.	
Similarly,	 Suca,	Deroba,	 et	 al.	 (2021)	 found	 that	 total	 kinetic	 en-
ergy,	 a	 proxy	 for	mesoscale	 eddies,	was	 an	 important	 driver	 for	
the	distributions	of	sand	lance,	herring,	alewife,	and	mackerel,	sug-
gesting,	along	with	our	results,	that	mesoscale	and	submesoscale	
eddies	are	 important	 for	 the	occurrence	and	abundance	of	some	
forage	fish	species.	Filament	ridges	are	also	associated	with	forag-
ing	behavior	of	top	predators,	including	seabirds,	sharks,	and	ma-
rine	mammals	 that	 are	 likely	 feeding	 on	 forage	 fishes	 and	 other	
prey	that	aggregate	to	these	features	(Abrahms	et	al.,	2018;	Cotté	
et	al.,	2011;	Della	Penna	et	al.,	2015;	Kai	et	al.,	2009).	Productivity	
and	 SST	 frontal	 features	 have	 also	 been	 associated	 with	 higher	
abundance	 of	 zooplankton	 (Genin	 et	 al.,	 2005),	 forage	 fishes	
(Friedland	et	al.,	2020),	and	top	predators	(Scales,	Miller,	Hawkes,	
et	al.,	2014),	supporting	the	relationships	found	in	our	community	
models.

Sea	surface	temperature	and	depth	were	important	predictors	
for	nearly	the	entire	forage	fish	community	but	had	a	weaker	influ-
ence	than	the	submesoscale	eddies	and	front	persistence.	SST	 is	
well	established	as	a	regulating	factor	in	the	distribution	of	pelagic	
fishes	via	physiological	thermal	niche	constraints	(Ma	et	al.,	2022),	
and	 top	 predator	 distributions	 are	 known	 to	 be	 associated	with	
SST	patterns,	as	they	track	prey	distributions	(Hazen	et	al.,	2013).	
SST	 and	 depth	 were	 also	 consistently	 predictive	 of	 forage	 fish	
distributions	 in	 single-	species	 modeling	 frameworks	 (Friedland	
et	al.,	2020;	Holland	et	al.,	2021;	Suca,	Deroba,	et	al.,	2021).	Thus,	
our	models	provide	further	evidence	that	SST	and	depth	gradients	
are	important	for	structuring	the	community	distribution	of	forage	
fishes.

Season
Community 
type NES richness

FFA area 
richness FFA abundance

FFA 
density

Autumn 1 5.79 ± 1.89 5.63 ± 1.86 14,441.17 ± 43,985.09 1917.49

2 2.41 ± 0.38 - - - 

3 1.50 ± 0.28 - - - 

4 1.58 ± 0.39 1.92 ± 0.60 132.11 ± 447.95 9.11

5 1.07 ± 0.34 1.11 ± 0.35 27.52 ± 231.63 1.72

6 0.29 ± 0.18 0.29 ± 0.29 0 ± 0.00 0.0

Spring 1 3.37 ± 1.07 3.22 ± 0.97 634.72 ± 2174.49 59.09

2 1.56 ± 0.21 1.65 ± 0.24 9.41 ± 19.40 0.61

3 1.46 ± 0.14 - - - 

4 1.15 ± 0.25 1.24 ± 0.27 11.20 ± 55.09 0.70

5 1.03 ± 0.13 1.01 ± 0.13 0.13 ± 0.36 0.01

6 1.17 ± 0.14 1.17 ± 0.10 0 ± 0.00 0.00

Note:	Species	richness	was	calculated	for	each	community	type	as	the	mean ± SD	of	the	summed	
occupancy	for	all	grid	cells	classified	to	that	type.	FFA	abundance	metrics	were	calculated	for	the	
community	types	represented	in	the	FFA	study	area.	FFA	abundance	is	the	estimated	number	
(mean ± SD)	of	FFA	spatially	overlapping	each	community	type.	FFA	density	is	calculated	as	the	
number	of	FFA	per	km2	for	each	community	type.

TA B L E  5 Species	richness,	forage	fish	
aggregation	(FFA)	abundance,	and	FFA	
density	by	community	type	across	the	US	
Northeast	Continental	Shelf	(NES)	and	
FFA	study	areas.
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4.3.2  |  Aggregating	behavior

The	complex	interplay	between	MLD	and	the	benthic	terrain	combined	
with	 behavioral	mechanisms	driven	by	 foraging	 needs	 and	predator	
avoidance	may	be	associated	with	the	spatial	patterns	we	found	in	FFA	
abundance	and	size.	In	the	NES,	MLD	is	a	temporal	indicator	of	sea-
sonal	stratification	of	the	water	column	with	weak	stratification	and	
deeper	MLD	during	the	winter	due	to	strong	upper	ocean	mixing,	con-
trasting	with	strong	stratification	and	a	shallow	MLD	during	the	sum-
mer	(Cai	et	al.,	2021;	Li	et	al.,	2015).	Seasonal	spatial	variation	in	MLD	
reflects	differences	in	subsurface	temperature	and	salinity	gradients	
(i.e.,	thermo-		and	haloclines;	collectively,	pycnoclines)	across	the	shelf	
due	to	localized	bathymetry	and	coastal	processes	such	as	freshwater	
inputs	and	tidal	mixing	(Cai	et	al.,	2021;	Li	et	al.,	2015).	FFA	formation	
is	 influenced	by	strong	links	between	seasonal	surface	stratification,	
subsurface	productivity	gradients,	and	zooplankton	distribution	with	
the	resources	of	forage	fishes	concentrated	within	a	relatively	smaller	
volume	of	space	during	the	summer	and	fall,	while	those	resources	are	
dispersed	over	a	larger	volume	in	the	winter	and	spring.

Mixed	 layer	 depth	 was	 the	 most	 important	 predictor	 of	 FFA	
abundance	 and	 the	 second	most	 important	 predictor	 of	 FFA	 size.	
However,	 the	 direction	 of	 this	 relationship	 differed	 with	 shal-
lower	MLD	(stronger	stratification)	associated	with	more	FFA,	and	
deeper	 MLD	 (weaker	 stratification)	 associated	 with	 larger	 FFA.	
Sharp	pycnoclines	 due	 to	 strong	 stratification	 are	 associated	with	
high	subsurface	productivity	(Weston	et	al.,	2005),	which	is,	in	turn,	
linked	 to	 increased	 aggregations	 of	 zooplankton	 (Genin,	 2004),	
driving	 higher	 abundance	 of	 FFA,	 but	 smaller	 individual	 FFA	 size.	
Additionally,	links	have	been	found	between	stratified	areas	where	
abrupt	changes	in	topography,	such	as	steep	depressions	(i.e.,	neg-
ative	BPI	values),	cause	internal	waves	that	drive	large	aggregations	
of	forage	fish	to	the	surface	(Cox	et	al.,	2018).	These	conditions	are	
commonly	 found	 at	 the	 shelf	 edge	 or	 offshore	 banks,	 resulting	 in	
local	upwelling	that	depresses	MLD,	allowing	resources	to	disperse	
and	larger	FFAs	to	form.

The	regions	of	highest	predicted	FFA	abundance	for	our	models	
were	also	coincident	with	 the	relatively	shallow	depths	associated	
with	the	mouths	of	major	freshwater	inputs,	such	as	the	Chesapeake	
and	Delaware	 Bays,	 suggesting	 that	 in	 the	Mid-	Atlantic	 and	New	
York	 Bights,	 shallow	 habitat	 may	 function	 both	 as	 convergence	
zone	(i.e.,	a	mixing	zone	between	water	masses	and	fine-	scale	tidal	
currents)	 and	 refugia	 from	predation	 (Litz	 et	 al.,	2014).	Moreover,	
on	continental	shelves	like	the	NES	ecosystem,	shallow	depth	may	
drive	 zooplankton	 aggregation	 formation	 by	 blocking	 diel	 migra-
tion	 back	 to	 deeper	 waters	 (i.e.,	 topographic	 blockage,	 Isaacs	 &	
Schwartzlose,	1965).	 Topographic	 blocking	 traps	 those	 planktonic	
aggregations	 in	 shallower	 regions,	 exposing	 them	 to	 forage	 fish	
predation,	and,	subsequently,	resulting	in	FFA	formation	via	trophic	
focusing	(Genin,	2004).	However,	BPI,	a	measure	of	the	benthic	to-
pography,	was	a	more	important	predictor	than	depth	for	FFA	size.	
In	 both	models,	 shallower	 depths	were	 an	 indication	of	more	 and	
bigger	FFA,	while	larger	FFAs	were	associated	with	extremely	neg-
ative	BPI,	 indicating	abrupt,	benthic	depressions	or	valley	bottoms	

(Lundblad	et	al.,	2006).	This	connects	back	to	the	aforementioned	
relationship	with	MLD,	where	stratified	regions	interact	with	abrupt	
benthic	depressions	to	spur	the	formation	of	large	FFAs.

4.3.3  |  Contrasting	drivers	of	distributions	and	
aggregations

While	 FFA	 abundance	may	overlap	 spatially	with	 community	 spe-
cies	richness,	these	patterns	are	driven	by	different	oceanographic	
processes.	MLD,	 a	 subsurface	dynamic	 variable,	was	 important	 to	
FFA	abundance	and	size.	However,	MLD	was	not	 important	at	the	
community	occupancy	 level	with	a	 low	effect	size	 in	both	autumn	
and	 spring.	 In	 contrast,	 the	 environmental	 drivers	 with	 the	 larg-
est	 influence	 on	 community-	level	 occupancy	 were	 dynamic	 sur-
face	processes:	eddies	and	frontal	features.	The	differences	 in	the	
oceanographic	processes	driving	community	occupancy	versus	FFA	
abundance	are	 likely	due	to	the	aggregation	dataset	 inherently	 in-
cluding	 behavioral	 information	 (i.e.,	 surface	 schooling	 behavior),	
which	 is	 absent	 from	 the	 occupancy	 dataset.	 Subsurface	 features	
describing	the	vertical	water	column	may	be	more	tightly	linked	with	
behavioral	processes	related	to	depth	(i.e.,	diel	migration,	surface	ag-
gregation	formation).	Relatedly,	differences	in	oceanographic	drivers	
may	 also	 reflect	 that	 FFAs	 are	 nested	 hierarchically	 within	 com-
munity	occupancy,	such	that	FFAs	represent	finer-	scale	structures	
within	 the	 larger	 community	 distribution	 (Fauchald	 et	 al.,	 2000).	
Conversely,	depth,	a	static	habitat	feature,	was	important	to	all	lev-
els	of	organization	(species	occupancy,	community	occupancy,	and	
FFA	abundance/size)	and	has	been	an	important	predictor	of	forage	
fish	abundance	in	multiple	studies	of	the	NES	ecosystem	(Friedland	
et	al.,	2019;	Suca,	Deroba,	et	al.,	2021).	This	 finding	suggests	 that	
some	static	habitat	features	may	influence	forage	fishes'	spatial	dis-
tribution	 regardless	of	 scale	or	may	 indicate	 that	depth	 integrates	
several	important	processes	in	one	measure.

4.4  |  Implications for ecosystem change

The	FFA	patterns	and	community	dynamics	described	by	our	mod-
els	 are	 reliant	 upon	 relatively	 recent	 historical	 data	 (FFA:	 2012–	
2019,	 community	 SDM:	 1997–	2019).	 Due	 to	 climate	 change,	 the	
NES	 is	experiencing	 rapid	warming	at	 three	 times	 the	global	aver-
age	(Pershing	et	al.,	2021)	and	increased	frequency	of	marine	heat-
waves	 (Laufkötter	 et	 al.,	 2020).	 Concurrent	 decreases	 in	 surface	
salinity	 combined	 with	 rising	 temperatures	 are	 expected	 to	 drive	
increased	 seasonal	 stratification	 (i.e.,	MLD;	 Pershing	 et	 al.,	2021),	
which,	based	on	our	findings,	has	the	potential	to	affect	the	distribu-
tion,	 abundance,	 and	aggregating	behavior	of	 forage	 fishes	 in	 this	
system.	 Climate-	induced	warming	 has	 already	 induced	 detectable	
broadscale	and	seasonal	distribution	shifts	across	the	trophic	web	
in	 the	NES,	 from	plankton	 (Chust	 et	 al.,	2014),	 fish,	 and	macroin-
vertebrates	 (Friedland	 et	 al.,	 2020)	 to	 predatory	 fishes	 (Muhling	
et	 al.,	 2017)	 and	marine	mammals	 (Pendleton	 et	 al.,	2022),	 and	 is	
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expected	to	influence	the	distributions	of	key	forage	fishes	included	
in	 this	 study,	 such	 as	 sand	 lance,	 herring,	 and	 menhaden	 (Hare	
et	al.,	2016;	Staudinger	et	al.,	2020;	Suca,	Wiley,	et	al.,	2021).	These	
distribution	shifts	are	not	expected	to	occur	symmetrically	and	may	
not	result	in	wholescale	northward	shifts	of	the	present	community.	
Instead,	these	changes	could	result	in	the	development	of	novel,	no-	
analog	communities	(i.e.,	community	composition	unlike	that	known	
from	 the	 historical	 or	 paleontological	 record),	 leading	 to	 changes	
in	 community	 relationships	 among	 forage	 fish	 species	 and	 affect-
ing	 spatiotemporal	 patterns	 in	 aggregating	 behavior	 (Williams	 &	
Jackson,	2007).	Moreover,	climate-	induced	warming	can	affect	the	
abundance,	size,	quality	(i.e.,	lipid	content),	and	intraguild	dynamics	
of	forage	fishes,	disrupting	trophic	energy	transfer	to	higher	trophic	
level	 predators	 and	 fueling	 mass	 mortality	 events	 of	 predators	
(Arimitsu	et	al.,	2021).	Our	results	highlight	the	need	for	additional	
research	into	the	effects	of	climate	change	on	subsurface	dynamic	
processes	and	how	those	effects	may	impact	trophic	interactions.

Additionally,	the	imminent	development	of	offshore	wind	energy	
(i.e.,	the	construction	of	large-	scale	offshore	windfarms)	in	the	NES	
may	contribute	to	meso-		and	submesoscale	changes	in	localized	cur-
rent	patterns	circulation	and	subsurface	dynamics,	such	as	stratifica-
tion	(Christiansen	et	al.,	2022;	Dorrell	et	al.,	2022).	Although	a	recent	
study	shows	that	wind	energy	lease	areas	overlap	considerably	with	
the	core	habitat	of	forage	fish	species	 (Friedland	et	al.,	2023),	 it	 is	
unknown	how	these	habitat	alterations	may	influence	forage	fish	ag-
gregating	behavior	in	the	NES	(but	see	Raoux	et	al.,	2017),	and,	thus,	
realized	prey	availability.	Unanticipated	synergistic	interactions	be-
tween	climate	change	effects,	offshore	wind	energy	development,	
and	other	anthropogenic	stressors,	such	as	pollution	and	commercial	
and	recreational	fisheries,	could	further	alter	patterns	of	forage	fish	
availability	across	the	NES	shelf.

4.5  |  Limitations and sources of bias

The	NOAA	bottom	 trawl	 surveys	 are	 not	 designed	 to	 sample	 pe-
lagic	 or	 surface	 schooling	 species,	 and	 there	 may	 be	 differential	
catchability	rates	among	the	forage	fishes,	as	well	as	biases	in	size	
selectivity	 due	 to	 gear	 design.	 Moreover,	 water	 depth	 influences	
the	probability	of	capture	of	forage	fishes	by	bottom	trawls,	since	
midwater	forage	fishes	may	be	more	available	to	the	gear	over	shal-
lower	bottoms	(<50 m)	compared	to	deeper	waters	where	they	are	
more	 likely	 to	 be	 captured	 only	 on	 the	 deployment	 and	 recovery	
of	 the	 gear.	 However,	 while	 these	 species	 are	 defined	 as	 pelagic,	
many	do	use	 the	entire	water	column	on	 the	continental	 shelf	via	
diel	migration,	predator	avoidance,	 foraging,	 and	 spawning	behav-
iors	(Freon	&	Misund,	1999).	In	addition,	there	was	a	significant	gear	
change	 during	 our	 study	 period	 (2009)	 that	 led	 to	 notable	 catch	
changes	for	many	forage	fish	species,	especially	sand	 lance	 (Miller	
et	al.,	2010).	After	the	gear	change,	the	trawl	catch	of	sand	lance	has	
been	considered	unreliable	for	the	purposes	of	abundance	monitor-
ing	(Richardson	et	al.,	2014);	however,	it	has	been	deemed	adequate	
for	 presence-	absence	 occurrence	 models	 that	 span	 that	 period	

(Friedland	et	al.,	2020).	Despite	bottom	trawls	not	being	 the	 ideal	
sampling	method	for	forage	fishes,	these	surveys	are	considered	to	
be	reliable	for	measuring	abundance	for	stock	assessments	and	dis-
tribution	analyses	for	some	forage	fish	species	(Northeast	Fisheries	
Science	Center,	2018).	To	address	these	issues	and	control	bias,	we	
confined	our	community	analysis	to	modeling	occupancy	rather	than	
abundance.	In	addition,	scale	is	confounded	with	behavior	such	that	
estimating	broadscale	occupancy	 in	JSDMs	rather	 than	 finer-	scale	
abundance	may	mask	behaviorally	driven	relationships	with	oceano-
graphic	processes,	such	as	community	abundance	with	MLD.	Future	
studies	could	compare	a	community	JSDM	using	abundance	data	to	
the	FFA	model	results	to	see	if	community	abundance	patterns	more	
closely	track	FFAs	than	occupancy;	however,	species	such	as	sand	
lance	may	need	to	be	excluded.

In	 the	aerial	 survey	 imagery,	 submerged	 fauna	may	not	be	de-
tected	due	to	observation	conditions	(i.e.,	turbidity,	sea	state,	etc.,),	
water	depth,	or	seasonal	variation	in	behavior.	The	digital	recorders	
only	capture	the	top	several	meters	of	the	water	column	(Hodgson	
et	al.,	2017;	Martin	Scott,	HiDef	Aerial	Surveying	Ltd.,	pers.	comm).	
Due	to	variations	 in	vertical	distribution	patterns	of	schools,	FFAs	
may	be	more	detectable	at	shallower	depths,	while	seasonal	behav-
iors	of	some	schooling	species,	such	as	shifts	to	deeper	water,	may	
also	 limit	FFA	detection	by	aerial	surveys	 (Freon	&	Misund,	1999).	
To	address	these	detection	biases,	we	limited	our	interpretation	to	
surface	FFA	patterns,	 acknowledging	 that	 the	data	does	not	 sam-
ple	all	FFA	in	the	water	column.	In	addition,	the	aggregation	models	
were	limited	by	the	inability	to	identify	FFA	composition	at	species-	
level	 and	 by	 the	 aerial	 survey	 sampling	 frequency,	 preventing	 us	
from	 integrating	 the	 datasets	 into	 a	 combined	 model	 for	 forage	
fish	species	and	aggregations.	Thus,	we	were	reliant	upon	post-	hoc	
comparisons	of	our	predicted	distributions.	Finally,	FFA	occurrence	
is	a	highly	ephemeral	process,	occurring	over	spatiotemporal	scales	
smaller	 than	 the	4 km-	,	 daily-	scale	oceanographic	data	we	used	 in	
our	models,	or	the	4–	8	aerial	surveys/year	conducted	in	this	study.	
Collecting	more	finer-	scale	and	local	oceanographic	and	survey	data	
could	 improve	 model	 performance	 and	 reveal	 additional	 habitat	
relationships.

5  |  CONCLUSIONS

In	 the	 context	 of	 rapid	 climate	 change	 and	 other	 anthropogenic	
stressors	in	the	NES,	we	expect	concomitant	changes	in	both	the	
broadscale	distribution	of	forage	fishes	and	the	patch-	scale	distri-
bution	of	FFA.	Changes	in	patch-	scale	FFA	dynamics,	as	a	measure	
of	 realized	 prey	 availability,	 are	 likely	 to	 have	 cascading	 effects	
through	the	food	web,	 impacting	predator–	prey	 interactions	and	
driving	concurrent	changes	in	predator	distributions	as	they	track	
changing	prey	availability.	Our	analysis	provides	an	initial	step	to	
better	understanding	the	realized	prey	availability	of	upper	trophic	
level	 predators	 and	 how	 to	 integrate	 that	 information	 to	 track	
current	 predator–	prey	 interactions	 and	 forecast	 these	 relation-
ships	into	an	uncertain	future.	Additionally,	our	results	show	that	
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subsurface	dynamic	processes,	such	as	MLD,	are	better	predictors	
of	FFA	 than	 surface	 features	 like	eddies	 and	 fronts,	 highlighting	
the	need	to	implement	more	informative	proxies	for	realized	prey	
availability	at	the	corresponding	spatial	and	organizational	scales	
of	predator–	prey	 interactions.	When	designing	marine	predator–	
prey	interaction	studies,	subsurface	dynamic	variables	may	be	key	
for	detecting	these	scale-	dependent	relationships.	Understanding	
the	key	drivers	of	 forage	fish	dynamics	at	scales	relevant	to	for-
aging	marine	predators	can	aid	scientists	and	managers	in	imple-
menting	effective	management	and	conservation	strategies	across	
trophic levels.

AUTHOR CONTRIBUTIONS
Chandra Goetsch:	 Data	 curation	 (equal);	 formal	 analysis	 (lead);	
methodology	 (lead);	 visualization	 (lead);	 writing	 –		 original	 draft	
(lead);	writing	 –		 review	 and	 editing	 (equal).	 Julia Gulka:	 Data	 cu-
ration	 (equal);	 formal	 analysis	 (supporting);	 writing	 –		 review	 and	
editing	 (equal).	Kevin D. Friedland:	 Data	 curation	 (equal);	 formal	
analysis	 (supporting);	methodology	 (supporting);	writing	–		 review	
and	editing	(equal).	Arliss J. Winship:	Data	curation	(equal);	meth-
odology	 (supporting);	 writing	 –		 review	 and	 editing	 (equal).	 Jeff 
Clerc:	Data	curation	(equal);	investigation	(equal);	writing	–		review	
and	editing	(equal).	Andrew Gilbert:	Data	curation	(equal);	investi-
gation	(equal);	writing	–		review	and	editing	(equal).	Holly F. Goyert: 
Methodology	 (supporting);	 writing	 –		 review	 and	 editing	 (equal).	
Iain J. Stenhouse:	Data	curation	(equal);	investigation	(equal);	writ-
ing	–		review	and	editing	(equal).	Kathryn A. Williams:	Data	curation	
(equal);	funding	acquisition	(supporting);	investigation	(equal);	writ-
ing	 –		 review	 and	 editing	 (equal).	 Julia R. Willmott:	Data	 curation	
(equal);	 investigation	 (equal);	writing	–		 review	and	editing	 (equal).	
Melinda L. Rekdahl:	Writing	–		review	and	editing	(equal).	Howard C. 
Rosenbaum:	Writing	–		review	and	editing	(equal).	Evan M. Adams: 
Conceptualization	 (lead);	 data	 curation	 (equal);	 formal	 analysis	
(lead);	funding	acquisition	(lead);	investigation	(equal);	methodology	
(lead);	 visualization	 (supporting);	writing	–		original	draft	 (support-
ing);	writing	–		review	and	editing	(equal).

ACKNOWLEDG MENTS
We	thank	our	principal	 funder	NYSERDA	 (New	York	State	Energy	
Research	and	Development	Authority;	Award	Number:	143064)	for	
their	 generous	 support	of	 this	project	 and	data	 collection	efforts.	
We	also	thank	the	US	Department	of	Energy	 (Award	Number	DE-	
EE0005362),	Maryland	Department	of	Natural	Resources	 and	 the	
Maryland	 Energy	 Administration	 (Contract	 Number	 14-	13-	1653	
MEA)	 for	 funding	 the	 aerial	 digital	 surveys.	 We	 acknowledge	 all	
those	 involved	 in	 funding,	 implementation,	 and	 collection	 of	 the	
datasets	used	in	this	study:	NOAA	NEFSC	bottom	trawl	survey	crew	
and	scientists,	APEM	and	HiDef	aerial	 survey	and	 imagery	 review	
crews,	 and	 the	 BRI	 and	 Normandeau	 researchers	 who	 identified	
and	measured	 aggregations.	We	 also	 thank	 Kate	McClellan	 Press	
from	 NYSERDA	 for	 logistical	 support,	 and	 Dr.	 Otso	 Ovaskainen	
(University	of	Helsinki)	 for	 valuable	 advice	on	 the	HMSC	package	
and	methodology.	 This	 study	was	 conducted	 using	 environmental	

data	 provided	 by	 E.U.	 Copernicus	 Marine	 Service	 Information	
(CMEMS),	AVISO+,	and	GEBCO.

CONFLIC T OF INTERE S T S TATEMENT
The	authors	declare	no	conflict	of	interest.

DATA AVAIL ABILIT Y S TATEMENT
NOAA	 bottom	 trawl	 data	 (NOAA	 InPort	 Catalog	 IDs:	 22560	 and	
22,561)	 are	 available	 at	 https://www.fishe	ries.noaa.gov/inport. 
Aerial	digital	survey	data	for	the	New	York	Project	(OBIS-	SEAMAP	
IDs:	 1817,	 1818,	 1994,	 and	 2073)	 are	 available	 at	 http://seamap.
env.duke.edu.	Aerial	digital	survey	data	for	the	Mid-	Atlantic	Project	
(Catalog	 IDs:	 115,	 148,	 168)	 are	 available	 from	 NOAA	 NCCOS	
Northwest	Atlantic	Seabird	Catalog	(v.0.6.2)	upon	request.	A	com-
plete	list	of	the	publicly	available	datasets	used	for	this	manuscript,	
including	query	details,	can	be	found	in	Appendix 1:	Section	1	and	
Appendix 1: Tables A1	and	A2.	Example	code	for	the	NIMBLE	FFA	
models is available at https://github.com/cgoet	sch/Forage_Fish_
Aggre	gation_Models.

ORCID
Chandra Goetsch  https://orcid.org/0000-0001-5247-5102 
Kevin D. Friedland  https://orcid.org/0000-0003-3887-0186 
Evan M. Adams  https://orcid.org/0000-0002-4327-6926 

R E FE R E N C E S
Abrahms,	 B.,	 Scales,	 K.	 L.,	 Hazen,	 E.	 L.,	 Bograd,	 S.	 J.,	 Schick,	 R.	 S.,	

Robinson,	P.	W.,	&	Costa,	D.	P.	(2018).	Mesoscale	activity	facilitates	
energy	 gain	 in	 a	 top	 predator.	Proceedings of the Royal Society B: 
Biological Sciences,	285(1885),	20181101.	https://doi.org/10.1098/
rspb.2018.1101

Arimitsu,	M.	L.,	Piatt,	J.	F.,	Hatch,	S.,	Suryan,	R.	M.,	Batten,	S.,	Bishop,	M.	
A.,	Campbell,	R.	W.,	Coletti,	H.,	Cushing,	D.,	Gorman,	K.,	Hopcroft,	
R.	 R.,	 Kuletz,	 K.	 J.,	 Marsteller,	 C.,	 McKinstry,	 C.,	 McGowan,	 D.,	
Moran,	 J.,	 Pegau,	 S.,	 Schaefer,	 A.,	 Schoen,	 S.,	 …	 von	 Biela,	 V.	 R.	
(2021).	 Heatwave-	induced	 synchrony	 within	 forage	 fish	 portfo-
lio	 disrupts	 energy	 flow	 to	 top	 pelagic	 predators.	Global Change 
Biology,	27(9),	1859–	1878.	https://doi.org/10.1111/gcb.15556

Arkema,	 K.	 K.,	 Abramson,	 S.	 C.,	 &	 Dewsbury,	 B.	 M.	 (2006).	 Marine	
ecosystem-	based	 management:	 From	 characterization	 to	 imple-
mentation.	Ecology and Environment,	4(10),	525–	532.

Banerjee,	 S.,	 Carlin,	 B.	 P.,	 Gelfand,	 A.	 E.,	 &	 Banerjee,	 S.	 (2003).	
Hierarchical modeling and analysis for spatial data, hierarchical model-
ing and analysis for spatial data.	Chapman	and	Hall/CRC.	https://doi.
org/10.1201/97802	03487808

Bangley,	C.	W.,	Curtis,	 T.	H.,	 Secor,	D.	H.,	 Latour,	 R.	 J.,	&	Ogburn,	M.	
B.	(2020).	Identifying	important	juvenile	dusky	shark	habitat	in	the	
Northwest	 Atlantic	 Ocean	 using	 acoustic	 telemetry	 and	 spatial	
modeling.	Marine and Coastal Fisheries,	12(5),	348–	363.	https://doi.
org/10.1002/MCF2.10120

Becker,	 E.	 A.,	 Forney,	 K.	 A.,	 Fiedler,	 P.	 C.,	 Barlow,	 J.,	 Chivers,	 S.	 J.,	
Edwards,	C.	A.,	Moore,	A.	M.,	&	Redfern,	J.	V.	 (2016).	Moving	to-
wards	dynamic	ocean	management:	How	well	do	modeled	ocean	
products	 predict	 species	 distributions?	Remote Sensing,	8(2),	 149.	
https://doi.org/10.3390/rs802	0149

Belkin,	 I.	 M.,	 &	 O'Reilly,	 J.	 E.	 (2009).	 An	 algorithm	 for	 oceanic	 front	
detection	 in	 chlorophyll	 and	 SST	 satellite	 imagery.	 Journal of 
Marine Systems,	 78(3),	 319–	326.	 https://doi.org/10.1016/j.jmars	
ys.2008.11.018

https://www.fisheries.noaa.gov/inport
http://seamap.env.duke.edu
http://seamap.env.duke.edu
https://github.com/cgoetsch/Forage_Fish_Aggregation_Models
https://github.com/cgoetsch/Forage_Fish_Aggregation_Models
https://orcid.org/0000-0001-5247-5102
https://orcid.org/0000-0001-5247-5102
https://orcid.org/0000-0003-3887-0186
https://orcid.org/0000-0003-3887-0186
https://orcid.org/0000-0002-4327-6926
https://orcid.org/0000-0002-4327-6926
https://doi.org/10.1098/rspb.2018.1101
https://doi.org/10.1098/rspb.2018.1101
https://doi.org/10.1111/gcb.15556
https://doi.org/10.1201/9780203487808
https://doi.org/10.1201/9780203487808
https://doi.org/10.1002/MCF2.10120
https://doi.org/10.1002/MCF2.10120
https://doi.org/10.3390/rs8020149
https://doi.org/10.1016/j.jmarsys.2008.11.018
https://doi.org/10.1016/j.jmarsys.2008.11.018


    |  25 of 37GOETSCH et al.

Benoit-	Bird,	 K.	 J.,	 Battaile,	 B.	 C.,	 Heppell,	 S.	 A.,	 Hoover,	 B.,	 Irons,	 D.,	
Jones,	N.,	Kuletz,	K.	 J.,	Nordstrom,	C.	A.,	Paredes,	R.,	 Suryan,	R.	
M.,	Waluk,	C.	M.,	&	Trites,	A.	W.	(2013).	Prey	patch	patterns	pre-
dict	 habitat	 use	 by	 top	 marine	 predators	 with	 diverse	 foraging	
strategies. PLoS One,	8(1),	 e53348.	 https://doi.org/10.1371/journ	
al.pone.0053348

Besag,	 J.,	 York,	 J.,	 &	 Mollié,	 A.	 (1991).	 Bayesian	 image	 restoration,	
with	 two	 applications	 in	 spatial	 statistics.	 Annals of the Institute 
of Statistical Mathematics,	 43(1),	 1–	20.	 https://doi.org/10.1007/
BF001 16466

Brodie,	S.,	 Jacox,	M.	G.,	Bograd,	S.	 J.,	Welch,	H.,	Dewar,	H.,	Scales,	K.	
L.,	Maxwell,	S.	M.,	Briscoe,	D.	M.,	Edwards,	C.	A.,	Crowder,	L.	B.,	
Lewison,	R.	L.,	&	Hazen,	E.	L.	 (2018).	 Integrating	dynamic	subsur-
face	 habitat	metrics	 into	 species	 distribution	models.	Frontiers in 
Marine Science,	5,	219.	https://doi.org/10.3389/fmars.2018.00219

Brooks,	 S.	 P.,	 &	 Gelman,	 A.	 (1998).	 General	 methods	 for	 monitoring	
convergence	of	iterative	simulations.	Journal of Computational and 
Graphical Statistics,	7(4),	434–	455.	https://doi.org/10.1080/10618	
600.1998.10474787

Buckland,	 S.	T.,	Burt,	M.	 L.,	Rexstad,	E.	A.,	Mellor,	M.,	Williams,	A.	E.,	
&	Woodward,	R.	(2012).	Aerial	surveys	of	seabirds:	The	advent	of	
digital methods. Journal of Applied Ecology,	49(4),	960–	967.	https://
doi.org/10.1111/j.1365-2664.2012.02150.x

Cai,	C.,	Kwon,	Y.	O.,	Chen,	Z.,	&	Fratantoni,	P.	(2021).	Mixed	layer	depth	
climatology	over	the	Northeast	U.S.	Continental	Shelf	(1993–	2018).	
Continental Shelf Research,	231,	104611.	https://doi.org/10.1016/J.
CSR.2021.104611

Cayula,	 J.	 F.,	 &	 Cornillon,	 P.	 (1992).	 Edge	 detection	 algorithm	 for	 SST	
images. Journal of Atmospheric and Oceanic Technology,	 9(1),	 67–	
80.	 https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFS	
I>2.0.CO;2

Charrad,	 M.,	 Ghazzali,	 N.,	 Boiteau,	 V.,	 &	 Niknafs,	 A.	 (2014).	 NbClust:	
An	R	package	 for	determining	 the	 relevant	number	of	clusters	 in	
a data set. Journal of Statistical Software,	61(6),	 1–	36.	https://doi.
org/10.18637/	JSS.V061.I06

Chelton,	D.	B.,	Gaube,	P.,	Schlax,	M.	G.,	Early,	 J.	 J.,	&	Samelson,	R.	M.	
(2011).	 The	 influence	 of	 nonlinear	 mesoscale	 eddies	 on	 near-	
surface	oceanic	chlorophyll.	Science,	334(6054),	328–	332.	https://
doi.org/10.1126/scien	ce.1208897

Christiansen,	N.,	Daewel,	U.,	Djath,	B.,	&	Schrum,	C.	(2022).	Emergence	
of	 large-	scale	 hydrodynamic	 structures	 due	 to	 atmospheric	 off-
shore	wind	farm	wakes.	Frontiers in Marine Science,	9,	1–	17.	https://
doi.org/10.3389/fmars.2022.818501

Chust,	G.,	Castellani,	C.,	Licandro,	P.,	Ibaibarriaga,	L.,	Sagarminaga,	Y.,	
&	 Irigoien,	 X.	 (2014).	 Are	Calanus	 spp.	 shifting	 poleward	 in	 the	
North	 Atlantic?	 A	 habitat	 modelling	 approach.	 ICES Journal of 
Marine Science,	 71(2),	 241–	253.	 https://doi.org/10.1093/ICESJ	
MS/FST147

Cotté,	C.,	D'Ovidio,	F.,	Chaigneau,	A.,	Lévy,	M.,	Taupier-	Letage,	I.,	Mate,	B.,	
&	Guinet,	C.	(2011).	Scale-	dependent	interactions	of	Mediterranean	
whales	with	marine	dynamics.	Limnology and Oceanography,	56(1),	
219–	232.	https://doi.org/10.4319/LO.2011.56.1.0219

Cox,	S.	L.,	Embling,	C.	B.,	Hosegood,	P.	J.,	Votier,	S.	C.,	&	Ingram,	S.	N.	
(2018).	 Oceanographic	 drivers	 of	 marine	 mammal	 and	 seabird	
habitat-	use	across	shelf-	seas:	A	guide	to	key	features	and	recom-
mendations	 for	 future	 research	 and	 conservation	 management.	
Estuarine, Coastal and Shelf Science,	 212,	 294–	310.	 https://doi.
org/10.1016/j.ecss.2018.06.022

Cury,	P.,	Bakun,	A.,	Crawford,	R.	J.	M.,	Jarre,	A.,	Quiñones,	R.	A.,	Shannon,	
L.	J.,	&	Verheye,	H.	M.	(2000).	Small	pelagics	in	upwelling	systems:	
Patterns	of	interaction	and	structural	changes	in	“wasp-	waist”	eco-
systems.	ICES Journal of Marine Science,	57(3),	603–	618.	https://doi.
org/10.1006/JMSC.2000.0712

Davoren,	 G.	 K.	 (2013).	 Distribution	 of	 marine	 predator	 hotspots	 ex-
plained	by	persistent	areas	of	prey.	Marine Biology,	160(12),	3043–	
3058.	https://doi.org/10.1007/s00227-013-2294-5

de	Valpine,	P.,	Turek,	D.,	Paciorek,	C.	J.,	Anderson-	Bergman,	C.,	Lang,	D.	
T.,	&	Bodik,	R.	(2017).	Programming	with	models:	Writing	statistical	
algorithms	 for	 general	model	 structures	with	NIMBLE.	 Journal of 
Computational and Graphical Statistics,	26(2),	403–	413.	https://doi.
org/10.1080/10618	600.2016.1172487

Della	Penna,	A.,	De	Monte,	S.,	Kestenare,	E.,	Guinet,	C.,	&	D'Ovidio,	F.	
(2015).	 Quasi-	planktonic	 behavior	 of	 foraging	 top	marine	 preda-
tors. Scientific Reports,	 5(1),	 1–	10.	 https://doi.org/10.1038/srep1	
8063

Despres-	Patanjo,	L.	I.,	Azarovitz,	T.	R.,	Byrne,	C.	J.,	Grosslein,	D.,	Henne,	
R.	C.,	&	Clark,	J.	R.	(1988).	Twenty-	five	years	of	fish	surveys	in	the	
northwest	Atlantic:	 The	NMFS	Northeast	 Fisheries	Center's	 bot-
tom	trawl	survey	program.	Marine Fisheries Review,	50(4),	69–	71.

Dorrell,	 R.	 M.,	 Lloyd,	 C.	 J.,	 Lincoln,	 B.	 J.,	 Rippeth,	 T.	 P.,	 Taylor,	 J.	 R.,	
Caulfield,	C.	C.	P.,	Sharples,	J.,	Polton,	J.	A.,	Scannell,	B.	D.,	Greaves,	
D.	M.,	Hall,	R.	A.,	&	Simpson,	J.	H.	(2022).	Anthropogenic	mixing	in	
seasonally	 stratified	 shelf	 seas	 by	offshore	wind	 farm	 infrastruc-
ture.	 Frontiers in Marine Science,	9,	 124.	 https://doi.org/10.3389/
fmars.2022.830927

d'Ovidio,	F.,	De	Monte,	S.,	Alvain,	S.,	Dandonneau,	Y.,	&	Lévy,	M.	(2010).	
Fluid	dynamical	niches	of	phytoplankton	types.	Proceedings of the 
National Academy of Sciences of the United States of America,	107(43),	
18366–	18370.	https://doi.org/10.1073/PNAS.10046	20107

d'Ovidio,	 F.,	 Fernández,	 V.,	 Hernández-	García,	 E.,	 &	 López,	 C.	 (2004).	
Mixing	 structures	 in	 the	 Mediterranean	 Sea	 from	 finite-	size	
Lyapunov	exponents.	Geophysical Research Letters,	31(17),	17203.	
https://doi.org/10.1029/2004G	L020328

Duron,	M.,	Connelly,	E.,	Stenhouse,	I.,	&	Williams,	K.	(2015).	High	resolu-
tion	digital	video	aerial	survey	data	protocols.	In	K.	A.	Williams,	E.	
E.	Connelly,	S.	M.	Johnson,	&	I.	J.	Stenhouse	(Eds.),	Wildlife densities 
and habitat use across temporal and spatial scales on the Mid- Atlantic 
Outer Continental Shelf: Final report to the Department of Energy 
EERE Wind & Water Power Technologies Office,	 Award	 Number	
DE-	EE0005362.	 Report	 BRI	 2015-	11	 (pp.	 104–	154).	 Biodiversity	
Research	Institute.

Engelhard,	G.	H.,	Peck,	M.	A.,	Rindorf,	A.,	Smout,	S.,	Van	Deurs,	M.,	Raab,	
K.,	Andersen,	K.	H.,	Garthe,	S.,	Lauerburg,	R.	A.	M.,	Scott,	F.,	Brunel,	
T.,	Aarts,	G.,	Van	Kooten,	T.,	&	Dickey-	Collas,	M.	(2014).	Forage	fish,	
their	fisheries,	and	their	predators:	Who	drives	whom?	ICES Journal 
of Marine Science,	 71(1),	 90–	104.	 https://doi.org/10.1093/ICESJ	
MS/FST087

Erickson,	K.	D.,	&	Smith,	A.	B.	 (2023).	Modeling	the	rarest	of	the	rare:	
A	comparison	between	multi-	species	distribution	models,	ensem-
bles	of	small	models,	and	single-	species	models	at	extremely	 low	
sample	 sizes.	 Ecography,	 2023,	 e06500.	 https://doi.org/10.1111/
ECOG.06500

Fauchald,	 P.	 (2009).	 Spatial	 interaction	 between	 seabirds	 and	 prey:	
Review	and	synthesis.	Marine Ecology Progress Series,	391,	139–	151.	
https://doi.org/10.3354/meps0	7818

Fauchald,	 P.,	 Erikstad,	 K.	 E.,	 &	 Skarsfjord,	H.	 (2000).	 Scale-	dependent	
predator-	prey	 interactions:	 The	 hierarchical	 spatial	 distribu-
tion	 of	 seabirds	 and	 prey.	 Ecology,	 81(3),	 773–	783.	 https://doi.
org/10.1890/0012-9658(2000)081[0773:SDPPI	T]2.0.CO;2

Foster,	S.	D.,	Givens,	G.	H.,	Dornan,	G.	J.,	Dunstan,	P.	K.,	&	Darnell,	R.	
(2013).	 Modelling	 biological	 regions	 from	 multi-	species	 and	 en-
vironmental	 data.	 Environmetrics,	 24(7),	 489–	499.	 https://doi.
org/10.1002/ENV.2245

Frederiksen,	 M.,	 Edwards,	 M.,	 Richardson,	 A.	 J.,	 Halliday,	 N.	
C.,	 &	 Wanless,	 S.	 (2006).	 From	 plankton	 to	 top	 predators:	
Bottom-	up	 control	 of	 a	 marine	 food	 web	 across	 four	 trophic	
levels. Journal of Animal Ecology,	 75(6),	 1259–	1268.	 https://doi.
org/10.1111/J.1365-2656.2006.01148.X

Freon,	 P.,	 &	Misund,	 O.	 A.	 (1999).	Dynamics of pelagic fish distribution 
and behaviour: Effects on fisheries and stock assessment	 (Vol.	348).	
Fishing	 News	 Books.	 https://horiz	on.docum	entat	ion.ird.fr/exl-
doc/pleins_texte	s/diver	s15-08/01002	1335.pdf

https://doi.org/10.1371/journal.pone.0053348
https://doi.org/10.1371/journal.pone.0053348
https://doi.org/10.1007/BF00116466
https://doi.org/10.1007/BF00116466
https://doi.org/10.3389/fmars.2018.00219
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1111/j.1365-2664.2012.02150.x
https://doi.org/10.1111/j.1365-2664.2012.02150.x
https://doi.org/10.1016/J.CSR.2021.104611
https://doi.org/10.1016/J.CSR.2021.104611
https://doi.org/10.1175/1520-0426(1992)009%3C0067:EDAFSI%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(1992)009%3C0067:EDAFSI%3E2.0.CO;2
https://doi.org/10.18637/JSS.V061.I06
https://doi.org/10.18637/JSS.V061.I06
https://doi.org/10.1126/science.1208897
https://doi.org/10.1126/science.1208897
https://doi.org/10.3389/fmars.2022.818501
https://doi.org/10.3389/fmars.2022.818501
https://doi.org/10.1093/ICESJMS/FST147
https://doi.org/10.1093/ICESJMS/FST147
https://doi.org/10.4319/LO.2011.56.1.0219
https://doi.org/10.1016/j.ecss.2018.06.022
https://doi.org/10.1016/j.ecss.2018.06.022
https://doi.org/10.1006/JMSC.2000.0712
https://doi.org/10.1006/JMSC.2000.0712
https://doi.org/10.1007/s00227-013-2294-5
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1038/srep18063
https://doi.org/10.1038/srep18063
https://doi.org/10.3389/fmars.2022.830927
https://doi.org/10.3389/fmars.2022.830927
https://doi.org/10.1073/PNAS.1004620107
https://doi.org/10.1029/2004GL020328
https://doi.org/10.1093/ICESJMS/FST087
https://doi.org/10.1093/ICESJMS/FST087
https://doi.org/10.1111/ECOG.06500
https://doi.org/10.1111/ECOG.06500
https://doi.org/10.3354/meps07818
https://doi.org/10.1890/0012-9658(2000)081%5B0773:SDPPIT%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081%5B0773:SDPPIT%5D2.0.CO;2
https://doi.org/10.1002/ENV.2245
https://doi.org/10.1002/ENV.2245
https://doi.org/10.1111/J.1365-2656.2006.01148.X
https://doi.org/10.1111/J.1365-2656.2006.01148.X
https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers15-08/010021335.pdf
https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers15-08/010021335.pdf


26 of 37  |     GOETSCH et al.

Friedland,	 K.	 D.,	 Adams,	 E.	 M.,	 Goetsch,	 C.,	 Gulka,	 J.,	 Brady,	 D.	 C.,	
Rzeszowski,	E.,	Crear,	D.	P.,	Gaichas,	S.,	Gill,	A.	B.,	McManus,	M.	C.,	
Methratta,	E.	T.,	Morano,	J.	L.,	&	Staudinger,	M.	D.	(2023).	Forage	
fish	species	prefer	habitat	within	designated	offshore	wind	energy	
areas	 in	 the	U.S.	Northeast	 Shelf	 ecosystem.	Marine and Coastal 
Fisheries,	15(2),	e10230.	https://doi.org/10.1002/MCF2.10230

Friedland,	K.	D.,	Langan,	J.	A.,	Large,	S.	I.,	Selden,	R.	L.,	Link,	J.	S.,	Watson,	
R.	A.,	&	Collie,	J.	S.	(2020).	Changes	in	higher	trophic	level	produc-
tivity,	 diversity	 and	niche	 space	 in	 a	 rapidly	warming	 continental	
shelf	 ecosystem.	 Science of the Total Environment,	 704,	 135270.	
https://doi.org/10.1016/j.scito	tenv.2019.135270

Friedland,	K.	D.,	McManus,	M.	C.,	Morse,	 R.	 E.,	 Link,	 J.	 S.,	&	Ojaveer,	
H.	 (2019).	Event	scale	and	persistent	drivers	of	fish	and	macroin-
vertebrate	 distributions	 on	 the	Northeast	 US	 Shelf.	 ICES Journal 
of Marine Science,	76(5),	1316–	1334.	https://doi.org/10.1093/icesj	
ms/fsy167

Friedman,	A.,	Pizarro,	O.,	Williams,	S.	B.,	&	Johnson-	Roberson,	M.	(2012).	
Multi-	scale	measures	 of	 rugosity,	 slope	 and	 aspect	 from	 benthic	
stereo	image	reconstructions.	PLoS One,	7(12),	50440.	https://doi.
org/10.1371/journ	al.pone.0050440

Garnesson,	 P.,	 Mangin,	 A.,	 D'Andon,	 O.	 F.,	 Demaria,	 J.,	 &	 Bretagnon,	
M.	 (2019).	 The	 CMEMS	GlobColour	 chlorophyll	 a	 product	 based	
on	satellite	observation:	Multi-	sensor	merging	and	 flagging	strat-
egies. Ocean Science,	 15(3),	 819–	830.	 https://doi.org/10.5194/
os-15-819-2019

GEBCO	 Compilation	 Group.	 (2020).	 GEBCO 2020 Grid. https://doi.
org/10.5285/a29c5	465-b138-234d-e053-6c86a	bc040b9

Gelman,	A.,	Carlin,	J.	B.,	Stern,	H.	S.,	Dunson,	D.	B.,	Vehtari,	A.,	&	Rubin,	
D.	B.	(2013).	Bayesian data analysis.	Chapman	and	Hall/CRC.	https://
doi.org/10.1201/b16018

Gelman,	 A.,	 &	 Rubin,	D.	 B.	 (1992).	 Inference	 from	 iterative	 simulation	
using	multiple	sequences.	Statistical Science,	7(4),	457–	472.	https://
doi.org/10.1214/ss/11770	11136

Genin,	 A.	 (2004).	 Bio-	physical	 coupling	 in	 the	 formation	 of	 zooplank-
ton	 and	 fish	 aggregations	 over	 abrupt	 topographies.	 Journal of 
Marine Systems,	 50(1–	2),	 3–	20.	 https://doi.org/10.1016/j.jmars	
ys.2003.10.008

Genin,	 A.,	 Jaffe,	 J.	 S.,	 Reef,	 R.,	 Richter,	 C.,	 &	 Franks,	 P.	 J.	 S.	 (2005).	
Swimming	against	the	flow:	A	mechanism	of	zooplankton	aggrega-
tion.	Science,	308(5723),	860–	862.	https://doi.org/10.1126/SCIEN	
CE.11078	34/

Good,	S.,	Fiedler,	E.,	Mao,	C.,	Martin,	M.	J.,	Maycock,	A.,	Reid,	R.,	Roberts-	
Jones,	 J.,	 Searle,	 T.,	Waters,	 J.,	While,	 J.,	&	Worsfold,	M.	 (2020).	
The	current	configuration	of	the	OSTIA	system	for	operational	pro-
duction	of	foundation	sea	surface	temperature	and	ice	concentra-
tion	analyses.	Remote Sensing,	12(4),	720.	https://doi.org/10.3390/
rs120	40720

Goyert,	H.	F.,	Gardner,	B.,	Veit,	R.	R.,	Gilbert,	A.	T.,	Connelly,	E.,	Duron,	
M.,	 Johnson,	 S.,	 &	 Williams,	 K.	 (2018).	 Evaluating	 habitat,	 prey,	
and	 mesopredator	 associations	 in	 a	 community	 of	 marine	 birds.	
ICES Journal of Marine Science,	 75(5),	 1602–	1612.	 https://doi.
org/10.1093/icesj	ms/fsy020

Greene,	 J.	 K.,	 Anderson,	 M.	 G.,	 Odell,	 J.,	 &	 Steinberg,	 N.	 (2010).	
Northwest Atlantic Marine Ecoregional Assessment: Species, hab-
itats and ecosystems.	 Phase	 One.	 http://www.nature.org/ourin	
itiat	ives/regio	ns/north	ameri	ca/areas/	easte	rnusm	arine/	explo	re/
index.htm

Grémillet,	D.,	Lewis,	S.,	Drapeau,	L.,	Van	Der	Lingen,	C.	D.,	Huggett,	J.	
A.,	Coetzee,	J.	C.,	Verheye,	H.	M.,	Daunt,	F.,	Wanless,	S.,	&	Ryan,	P.	
G.	(2008).	Spatial	match–	mismatch	in	the	Benguela	upwelling	zone:	
Should	we	expect	chlorophyll	and	sea-	surface	temperature	to	pre-
dict	marine	predator	distributions?	Journal of Applied Ecology,	45(2),	
610–	621.	https://doi.org/10.1111/J.1365-2664.2007.01447.X

Grosslein,	M.	D.	(1968).	Groundfish	survey	program	of	BCF	woods	hole.	
Commercial Fisheries Review,	31,	22–	30.

Hare,	J.	A.,	Morrison,	W.	E.,	Nelson,	M.	W.,	Stachura,	M.	M.,	Teeters,	E.	
J.,	Griffis,	R.	B.,	Alexander,	M.	A.,	Scott,	J.	D.,	Alade,	L.,	Bell,	R.	J.,	
Chute,	A.	S.,	Curti,	K.	L.,	Curtis,	T.	H.,	Kircheis,	D.,	Kocik,	J.	F.,	Lucey,	
S.	M.,	McCandless,	C.	T.,	Milke,	L.	M.,	Richardson,	D.	E.,	…	Griswold,	
C.	A.	(2016).	A	vulnerability	assessment	of	fish	and	invertebrates	to	
climate	change	on	the	Northeast	U.S.	Continental	Shelf.	PLoS One,	
11(2),	1–	30.	https://doi.org/10.1371/journ	al.pone.0146756

Hatch,	 S.	 K.,	 Connelly,	 E.	 E.,	 Divoll,	 T.	 J.,	 Stenhouse,	 I.	 J.,	 &	Williams,	
K.	A.	 (2013).	Offshore	observations	of	 eastern	 red	bats	 (Lasiurus 
borealis)	 in	 the	Mid-	Atlantic	 United	 States	 using	 multiple	 survey	
methods. PLoS One,	8(12),	e83803.	https://doi.org/10.1371/journ	
al.pone.0083803

Hazen,	E.	L.,	Jorgensen,	S.,	Rykaczewski,	R.	R.,	Bograd,	S.	J.,	Foley,	D.	G.,	
Jonsen,	I.	D.,	Shaffer,	S.	A.,	Dunne,	J.	P.,	Costa,	D.	P.,	Crowder,	L.	B.,	
&	Block,	B.	A.	(2013).	Predicted	habitat	shifts	of	Pacific	top	pred-
ators	in	a	changing	climate.	Nature Climate Change,	3(3),	234–	238.	
https://doi.org/10.1038/nclim	ate1686

Hodgson,	A.,	Peel,	D.,	&	Kelly,	N.	 (2017).	Unmanned	aerial	vehicles	for	
surveying	marine	fauna:	Assessing	detection	probability.	Ecological 
Applications,	27(4),	1253–	1267.	https://doi.org/10.1002/EAP.1519

Holland,	M.	M.,	Everett,	J.	D.,	Cox,	M.	J.,	Doblin,	M.	A.,	&	Suthers,	I.	M.	
(2021).	Pelagic	forage	fish	distribution	in	a	dynamic	shelf	ecosystem	
–		Thermal	demands	and	zooplankton	prey	distribution.	Estuarine, 
Coastal and Shelf Science,	249,	 107074.	 https://doi.org/10.1016/j.
ecss.2020.107074

Hunt,	G.	L.,	&	Schneider,	D.	C.	(1987).	Scale	dependent	processes	in	the	
physical	and	biological	environment	of	marine	birds.	In	J.	P.	Croxall	
(Ed.),	Seabird feeding ecology	(pp.	7–	41).	Cambridge	University	Press.

Isaacs,	 J.	 D.,	 &	 Schwartzlose,	 R.	 A.	 (1965).	 Migrant	 sound	 Scatterers:	
Interaction	 with	 the	 sea	 floor.	 Science,	 150(3705),	 1810–	1813.	
https://doi.org/10.1126/SCIEN	CE.150.3705.1810

Jenness,	J.	(2013).	DEM Surface Tools.	Jenness	Enterprises.	http://www.
jenne	ssent.com/arcgi	s/surfa	ce_area.htm

Jech,	 J.	M.,	&	McQuinn,	 I.	H.	 (2016).	Towards	a	balanced	presentation	
and	objective	interpretation	of	acoustic	and	trawl	survey	data,	with	
specific	 reference	 to	 the	 eastern	 Scotian	 Shelf.	Canadian Journal 
of Fisheries and Aquatic Sciences,	 73(12),	 1914–	1921.	 https://doi.
org/10.1139/CJFAS-2016-0113/ASSET/	IMAGE	S/LARGE/	CJFAS-
2016-0113F1.JPEG

Kai,	E.	T.,	Rossi,	V.,	Sudre,	 J.,	Weimerskirch,	H.,	 Lopez,	C.,	Hernandez-	
Garcia,	E.,	Marsac,	F.,	&	Garçon,	V.	 (2009).	Top	marine	predators	
track	 Lagrangian	 coherent	 structures.	Proceedings of the National 
Academy of Sciences of the United States of America,	106(20),	8245–	
8250.	https://doi.org/10.1073/pnas.08110	34106

Kane,	J.,	&	Prezioso,	J.	(2008).	Distribution	and	multi-	annual	abundance	
trends	 of	 the	 copepod	 Temora	 longicornis	 in	 the	 US	 Northeast	
Shelf	 ecosystem.	 Journal of Plankton Research,	 30(5),	 619–	632.	
https://doi.org/10.1093/plank	t/fbn026

Kery,	M.	A.,	&	Royle,	 J.	A.	 (2016).	Applied hierarchical modeling in ecol-
ogy: Analysis of distribution, abundance and species richness in R and 
BUGS.	Academic	Press.

Kleisner,	K.	M.,	Fogarty,	M.	J.,	Mcgee,	S.,	Hare,	J.	A.,	Moret,	S.,	Perretti,	
C.	T.,	&	Saba,	V.	S.	(2017).	Marine	species	distribution	shifts	on	the	
U.S.	Northeast	Continental	Shelf	under	continued	ocean	warming.	
Progress in Oceanography,	 153,	 24–	36.	 https://doi.org/10.1016/j.
pocean.2017.04.001

Koehn,	L.	E.,	Essington,	T.	E.,	Marshall,	K.	N.,	Kaplan,	I.	C.,	Sydeman,	W.	J.,	
Szoboszlai,	A.	I.,	&	Thayer,	J.	A.	(2016).	Developing	a	high	taxonomic	
resolution	food	web	model	to	assess	the	functional	role	of	forage	
fish	in	the	California	Current	ecosystem.	Ecological Modelling,	335,	
87–	100.	https://doi.org/10.1016/j.ecolm	odel.2016.05.010

Laufkötter,	 C.,	 Zscheischler,	 J.,	 &	 Frölicher,	 T.	 L.	 (2020).	 High-	impact	
marine	 heatwaves	 attributable	 to	 human-	induced	 global	 warm-
ing.	Science,	369(6511),	 1621–	1625.	 https://doi.org/10.1126/scien	
ce.aba0690

https://doi.org/10.1002/MCF2.10230
https://doi.org/10.1016/j.scitotenv.2019.135270
https://doi.org/10.1093/icesjms/fsy167
https://doi.org/10.1093/icesjms/fsy167
https://doi.org/10.1371/journal.pone.0050440
https://doi.org/10.1371/journal.pone.0050440
https://doi.org/10.5194/os-15-819-2019
https://doi.org/10.5194/os-15-819-2019
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.1201/b16018
https://doi.org/10.1201/b16018
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1016/j.jmarsys.2003.10.008
https://doi.org/10.1016/j.jmarsys.2003.10.008
https://doi.org/10.1126/SCIENCE.1107834/
https://doi.org/10.1126/SCIENCE.1107834/
https://doi.org/10.3390/rs12040720
https://doi.org/10.3390/rs12040720
https://doi.org/10.1093/icesjms/fsy020
https://doi.org/10.1093/icesjms/fsy020
http://www.nature.org/ourinitiatives/regions/northamerica/areas/easternusmarine/explore/index.htm
http://www.nature.org/ourinitiatives/regions/northamerica/areas/easternusmarine/explore/index.htm
http://www.nature.org/ourinitiatives/regions/northamerica/areas/easternusmarine/explore/index.htm
https://doi.org/10.1111/J.1365-2664.2007.01447.X
https://doi.org/10.1371/journal.pone.0146756
https://doi.org/10.1371/journal.pone.0083803
https://doi.org/10.1371/journal.pone.0083803
https://doi.org/10.1038/nclimate1686
https://doi.org/10.1002/EAP.1519
https://doi.org/10.1016/j.ecss.2020.107074
https://doi.org/10.1016/j.ecss.2020.107074
https://doi.org/10.1126/SCIENCE.150.3705.1810
http://www.jennessent.com/arcgis/surface_area.htm
http://www.jennessent.com/arcgis/surface_area.htm
https://doi.org/10.1139/CJFAS-2016-0113/ASSET/IMAGES/LARGE/CJFAS-2016-0113F1.JPEG
https://doi.org/10.1139/CJFAS-2016-0113/ASSET/IMAGES/LARGE/CJFAS-2016-0113F1.JPEG
https://doi.org/10.1139/CJFAS-2016-0113/ASSET/IMAGES/LARGE/CJFAS-2016-0113F1.JPEG
https://doi.org/10.1073/pnas.0811034106
https://doi.org/10.1093/plankt/fbn026
https://doi.org/10.1016/j.pocean.2017.04.001
https://doi.org/10.1016/j.pocean.2017.04.001
https://doi.org/10.1016/j.ecolmodel.2016.05.010
https://doi.org/10.1126/science.aba0690
https://doi.org/10.1126/science.aba0690


    |  27 of 37GOETSCH et al.

Lellouche,	 J.-	M.,	Greiner,	 E.,	 Bourdallé	Badie,	 R.,	Garric,	G.,	Melet,	A.,	
Drévillon,	M.,	Bricaud,	C.,	Hamon,	M.,	 Le	Galloudec,	O.,	 Regnier,	
C.,	Candela,	T.,	Testut,	C.-	E.,	Gasparin,	F.,	Ruggiero,	G.,	Benkiran,	
M.,	Drillet,	Y.,	&	Le	Traon,	P.-	Y.	(2021).	The	Copernicus	global	1/12°	
oceanic	and	sea	ice	GLORYS12	reanalysis.	Frontiers in Earth Science,	
9,	698876.	https://doi.org/10.3389/feart.2021.698876

Levin,	S.	A.	(1992).	The	problem	of	pattern	and	scale	in	ecology.	Ecology,	
73(6),	1943–	1967.	https://doi.org/10.2307/1941447

Li,	 Y.,	 Fratantoni,	 P.	 S.,	 Chen,	 C.,	Hare,	 J.	 A.,	 Sun,	 Y.,	 Beardsley,	 R.	 C.,	
&	 Ji,	 R.	 (2015).	 Spatio-	temporal	 patterns	 of	 stratification	 on	 the	
Northwest	Atlantic	Shelf.	Progress in Oceanography,	134,	123–	137.	
https://doi.org/10.1016/j.pocean.2015.01.003

Litz,	M.	N.	C.,	Emmett,	R.	L.,	Bentley,	P.	J.,	Claiborne,	A.	M.,	&	Barceló,	C.	
(2014).	Biotic	and	abiotic	factors	influencing	forage	fish	and	pelagic	
nekton	community	in	the	Columbia	River	plume	(USA)	throughout	
the	 upwelling	 season	 1999-	2009.	 ICES Journal of Marine Science,	
71(1),	5–	18.	https://doi.org/10.1093/icesj	ms/fst082

Lucca,	B.	M.,	&	Warren,	J.	D.	(2019).	Fishery-	independent	observations	of	
Atlantic	menhaden	abundance	in	the	coastal	waters	south	of	New	
York.	Fisheries Research,	218,	 229–	236.	 https://doi.org/10.1016/j.
fishr	es.2019.05.016

Lundblad,	E.	R.,	Wright,	D.	J.,	Miller,	J.,	Larkin,	E.	M.,	Rinehart,	R.,	Naar,	D.	
F.,	Donahue,	B.	T.,	Anderson,	S.	M.,	&	Battista,	T.	(2006).	A	benthic	
terrain	classification	scheme	for	American	Samoa.	Marine Geodesy,	
29(2),	89–	111.	https://doi.org/10.1080/01490	41060	0738021

Ma,	S.,	Tian,	Y.,	Li,	J.,	Ju,	P.,	Sun,	P.,	Ye,	Z.,	Liu,	Y.,	&	Watanabe,	Y.	(2022).	
Incorporating	 thermal	 niche	 to	 benefit	 understanding	 climate-	
induced	biological	variability	in	small	pelagic	fishes	in	the	Kuroshio	
ecosystem.	 Fisheries Oceanography,	 31(2),	 172–	190.	 https://doi.
org/10.1111/FOG.12570

Mannocci,	 L.,	 Boustany,	 A.	 M.,	 Roberts,	 J.	 J.,	 Palacios,	 D.	 M.,	 Dunn,	
D.	C.,	Halpin,	P.	N.,	Viehman,	 S.,	Moxley,	 J.,	Cleary,	 J.,	Bailey,	H.,	
Bograd,	S.	J.,	Becker,	E.	A.,	Gardner,	B.,	Hartog,	J.	R.,	Hazen,	E.	L.,	
Ferguson,	M.	C.,	Forney,	K.	A.,	Kinlan,	B.	P.,	Oliver,	M.	J.,	…	Winship,	
A.	J.	(2017).	Temporal	resolutions	in	species	distribution	models	of	
highly	mobile	marine	animals:	Recommendations	for	ecologists	and	
managers.	Diversity and Distributions,	23(10),	 1098–	1109.	https://
doi.org/10.1111/DDI.12609

McQuinn,	 I.	 H.	 (2009).	 Pelagic	 fish	 outburst	 or	 suprabenthic	 habitat	
occupation:	Legacy	of	the	Atlantic	cod	(Gadus morhua)	collapse	in	
eastern	Canada.	Canadian Journal of Fisheries and Aquatic Sciences,	
66(12),	2256–	2262.	https://doi.org/10.1139/F09-143

Miller,	P.	(2009).	Composite	front	maps	for	improved	visibility	of	dynamic	
sea-	surface	features	on	cloudy	SeaWiFS	and	AVHRR	data.	Journal 
of Marine Systems,	 78,	 327–	336.	 https://doi.org/10.1016/j.jmars	
ys.2008.11.019

Miller,	T.	 J.,	Das,	C.,	Politis,	P.	 J.,	Miller,	A.	S.,	 Lucey,	S.	M.,	 Legault,	C.	
M.,	 Brown,	 R.	W.,	 &	 Rago,	 P.	 J.	 (2010).	Estimation of Albatross IV 
to Henry B. Bigelow calibration factors.	Northeast	Fisheries	Science	
Center	Reference	Document	10-	05,	p.	233.	https://repos	itory.libra	
ry.noaa.gov/view/noaa/3726

Muhling,	 B.,	 Lindegren,	M.,	 Clausen,	 L.	W.,	Hobday,	 A.,	 &	 Lehodey,	 P.	
(2017).	 Impacts	 of	 climate	 change	 on	 pelagic	 fish	 and	 fisheries.	
Climate Change Impacts on Fisheries and Aquaculture,	2,	 771–	814.	
https://doi.org/10.1002/97811	19154	051.CH23

Normandeau	Associates	Inc.	 (2020).	Digital aerial baseline survey of ma-
rine wildlife in support of offshore wind energy: Summer 2016– Spring 
2019 seasonal surveys large bony fish and fish shoals final report. 
www.norma	ndeau.com

Northeast	Fisheries	Science	Center.	(2018).	64th Northeast regional stock 
assessment workshop (64th SAW) assessment report. https://doi.
org/10.25923/	SWK4-1E81

Ovaskainen,	 O.,	 &	 Abrego,	 N.	 (2020).	 Joint species distribution model-
ling.	 Cambridge	 University	 Press.	 https://doi.org/10.1017/97811	
08591720

Ovaskainen,	O.,	Tikhonov,	G.,	Norberg,	A.,	Guillaume	Blanchet,	F.,	Duan,	
L.,	Dunson,	D.,	Roslin,	T.,	&	Abrego,	N.	(2017).	How	to	make	more	
out	 of	 community	 data?	 A	 conceptual	 framework	 and	 its	 imple-
mentation	as	models	and	software.	Ecology Letters,	20(5),	561–	576.	
https://doi.org/10.1111/ele.12757

Overholtz,	W.	 J.,	 Link	Overholtz,	 J.	S.,	 Link,	W.	 J.,	&	Link,	 J.	S.	 (2007).	
Consumption	 impacts	 by	marine	mammals,	 fish,	 and	 seabirds	 on	
the	 Gulf	 of	Maine–	Georges	 Bank	 Atlantic	 herring	 (Clupea haren-
gus)	 complex	during	 the	years	1977–	2002.	 ICES Journal of Marine 
Science,	64(1),	83–	96.	https://doi.org/10.1093/ICESJ	MS/FSL009

Palacios,	D.	M.,	Baumgartner,	M.	F.,	Laidre,	K.	L.,	&	Gregr,	E.	J.	 (2014).	
Beyond	correlation:	Integrating	environmentally	and	behaviourally	
mediated	 processes	 in	 models	 of	 marine	 mammal	 distribu-
tions.	 Endangered Species Research,	 22(3),	 191–	203.	 https://doi.
org/10.3354/esr00558

Pearce,	 J.,	 &	 Ferrier,	 S.	 (2000).	 Evaluating	 the	 predictive	 perfor-
mance	 of	 habitat	 models	 developed	 using	 logistic	 regression.	
Ecological Modelling,	 133(3),	 225–	245.	 https://doi.org/10.1016/
S0304-3800(00)00322-7

Peck,	M.	A.,	Alheit,	J.,	Bertrand,	A.,	Catalán,	I.	A.,	Garrido,	S.,	Moyano,	
M.,	Rykaczewski,	R.	R.,	Takasuka,	A.,	&	van	der	Lingen,	C.	D.	(2021).	
Small	pelagic	fish	in	the	new	millennium:	A	bottom-	up	view	of	global	
research	effort.	Progress in Oceanography,	191,	102494.	https://doi.
org/10.1016/J.POCEAN.2020.102494

Pendleton,	D.	E.,	Tingley,	M.	W.,	Ganley,	 L.	C.,	Friedland,	K.	D.,	Mayo,	
C.,	Brown,	M.	W.,	McKenna,	B.	E.,	Jordaan,	A.,	Staudinger,	M.	D.,	&	
Daniel	Pendleton,	C.	E.	(2022).	Decadal-	scale	phenology	and	sea-
sonal	climate	drivers	of	migratory	baleen	whales	in	a	rapidly	warm-
ing	marine	ecosystem.	Global Change Biology,	28(16),	4989–	5005.	
https://doi.org/10.1111/GCB.16225

Pershing,	 A.	 J.,	 Alexander,	M.	 A.,	 Brady,	 D.	 C.,	 Brickman,	D.,	 Curchitser,	
E.	N.,	Diamond,	A.	W.,	McClenachan,	L.,	Mills,	K.	E.,	Nichols,	O.	C.,	
Pendleton,	D.	E.,	Record,	N.	R.,	Scott,	J.	D.,	Staudinger,	M.	D.,	&	Wang,	
Y.	(2021).	Climate	impacts	on	the	Gulf	of	Maine	ecosystem:	A	review	
of	observed	and	expected	changes	in	2050	from	rising	temperatures.	
Elementa,	9(1),	00076.	https://doi.org/10.1525/eleme	nta.2020.00076

Pikitch,	E.,	Boersma,	P.	D.,	Boyd,	I.	L.,	Conover,	D.	O.,	Cury,	P.,	Essington,	
T.,	Heppell,	S.	S.,	Houde,	E.	D.,	Mangel,	M.,	Pauly,	D.,	Plagányi,	É.,	
Sainsbury,	K.,	&	Steneck,	R.	S.	(2012).	Little fish, big impact: Managing 
a crucial link in ocean food webs.	Lenfest	Ocean	Program.	www.lenfe	
stoce	an.org

Pitcher,	T.	J.	(Ed.).	(1986).	Functions	of	shoaling	behaviour	in	teleosts.	In	
The behaviour of teleost fishes	 (pp.	294–	337).	Springer.	https://doi.
org/10.1007/978-1-4684-8261-4_12

Raoux,	A.,	Tecchio,	S.,	Pezy,	J.-	P.,	Lassalle,	G.,	Degraer,	S.,	Wilhelmsson,	
D.,	Cachera,	M.,	Ernande,	B.,	Le	Guen,	C.,	Haraldsson,	M.,	Grangeré,	
K.,	Le	Loc'h,	F.,	Dauvin,	J.-	C.,	&	Niquil,	N.	(2017).	Benthic	and	fish	
aggregation	inside	an	offshore	wind	farm:	Which	effects	on	the	tro-
phic	web	functioning?	Ecological Indicators,	72,	33–	46.	https://doi.
org/10.1016/j.ecoli	nd.2016.07.037

Richardson,	D.	E.,	Palmer,	M.	C.,	&	Smith,	B.	E.	(2014).	The	influence	of	
forage	fish	abundance	on	the	aggregation	of	gulf	of	Maine	Atlantic	
cod	(Gadus morhua)	and	their	catchability	 in	the	fishery.	Canadian 
Journal of Fisheries and Aquatic Sciences,	71(9),	1349–	1362.	https://
doi.org/10.1139/cjfas-2013-0489

Riley,	S.	J.,	DeGloria,	S.	D.,	&	Elliot,	R.	(1999).	A	terrain	ruggedness	index	
that	quantifies	topographic	heterogeneity.	Intermountain Journal of 
Sciences,	5(1–	4),	23–	27.

Roa-	Pascuali,	 L.,	 Demarcq,	 H.,	 &	 Nieblas,	 A.	 E.	 (2015).	 Detection	 of	
mesoscale	 thermal	 fronts	 from	 4km	 data	 using	 smoothing	 tech-
niques:	Gradient-	based	fronts	classification	and	basin	scale	appli-
cation.	Remote Sensing of Environment,	164,	 225–	237.	https://doi.
org/10.1016/j.rse.2015.03.030

Roberts,	J.	J.,	Best,	B.	D.,	Dunn,	D.	C.,	Treml,	E.	A.,	&	Halpin,	P.	N.	(2010).	
Marine	 Geospatial	 Ecology	 tools:	 An	 integrated	 framework	 for	

https://doi.org/10.3389/feart.2021.698876
https://doi.org/10.2307/1941447
https://doi.org/10.1016/j.pocean.2015.01.003
https://doi.org/10.1093/icesjms/fst082
https://doi.org/10.1016/j.fishres.2019.05.016
https://doi.org/10.1016/j.fishres.2019.05.016
https://doi.org/10.1080/01490410600738021
https://doi.org/10.1111/FOG.12570
https://doi.org/10.1111/FOG.12570
https://doi.org/10.1111/DDI.12609
https://doi.org/10.1111/DDI.12609
https://doi.org/10.1139/F09-143
https://doi.org/10.1016/j.jmarsys.2008.11.019
https://doi.org/10.1016/j.jmarsys.2008.11.019
https://repository.library.noaa.gov/view/noaa/3726
https://repository.library.noaa.gov/view/noaa/3726
https://doi.org/10.1002/9781119154051.CH23
http://www.normandeau.com
https://doi.org/10.25923/SWK4-1E81
https://doi.org/10.25923/SWK4-1E81
https://doi.org/10.1017/9781108591720
https://doi.org/10.1017/9781108591720
https://doi.org/10.1111/ele.12757
https://doi.org/10.1093/ICESJMS/FSL009
https://doi.org/10.3354/esr00558
https://doi.org/10.3354/esr00558
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1016/J.POCEAN.2020.102494
https://doi.org/10.1016/J.POCEAN.2020.102494
https://doi.org/10.1111/GCB.16225
https://doi.org/10.1525/elementa.2020.00076
http://www.lenfestocean.org
http://www.lenfestocean.org
https://doi.org/10.1007/978-1-4684-8261-4_12
https://doi.org/10.1007/978-1-4684-8261-4_12
https://doi.org/10.1016/j.ecolind.2016.07.037
https://doi.org/10.1016/j.ecolind.2016.07.037
https://doi.org/10.1139/cjfas-2013-0489
https://doi.org/10.1139/cjfas-2013-0489
https://doi.org/10.1016/j.rse.2015.03.030
https://doi.org/10.1016/j.rse.2015.03.030


28 of 37  |     GOETSCH et al.

ecological	 geoprocessing	 with	 ArcGIS,	 Python,	 R,	 MATLAB,	 and	
C++. Environmental Modelling and Software,	 25(10),	 1197–	1207.	
https://doi.org/10.1016/j.envso	ft.2010.03.029

Roberts,	J.	J.,	Best,	B.	D.,	Mannocci,	L.,	Fujioka,	E.,	Halpin,	P.	N.,	Palka,	D.	
L.,	Garrison,	L.	P.,	Mullin,	K.	D.,	Cole,	T.	V.	N.,	Khan,	C.	B.,	McLellan,	
W.	 A.,	 Pabst,	 D.	 A.,	 &	 Lockhart,	 G.	 G.	 (2016).	 Habitat-	based	 ce-
tacean	 density	models	 for	 the	 U.S.	 Atlantic	 and	 Gulf	 of	Mexico.	
Scientific Reports,	6,	1–	12.	https://doi.org/10.1038/srep2	2615

Roberts,	S.	M.,	Halpin,	P.	N.,	&	Clark,	J.	S.	(2022).	Jointly	modeling	ma-
rine	species	to	 inform	the	effects	of	environmental	change	on	an	
ecological	community	in	the	Northwest	Atlantic.	Scientific Reports,	
12(1),	1–	12.	https://doi.org/10.1038/s41598-021-04110-0

Robinson	Willmott,	 J.,	 Clerc,	 J.,	 Vukovich,	M.,	&	 Pembroke,	 A.	 (2021).	
Digital aerial baseline survey of marine wildlife in support of offshore 
wind energy.	 Overview	 and	 Summary.	 Report	 to	New	 York	 State	
Energy	Research	and	Development	Authority.	Contract	no.	95764,	
p. 60. https://remote.norma	ndeau.com/nys_aer_overv	iew.php

Rountos,	K.	J.	(2016).	Defining	forage	species	to	prevent	a	management	
dilemma. Fisheries,	 41(1),	 16–	17.	 https://doi.org/10.1080/03632	
415.2015.1110791

Ruckelshaus,	 M.,	 Klinger,	 T.,	 Knowlton,	 N.,	 &	 DeMaster,	 D.	 P.	 (2008).	
Marine	 ecosystem-	based	management	 in	 practice:	 Scientific	 and	
governance	 challenges.	 BioScience,	 58(1),	 53–	63.	 https://doi.
org/10.1641/B580110

Russell,	R.	W.,	Hunt,	G.	L.,	Coyle,	K.	O.,	&	Cooney,	R.	T.	(1992).	Foraging	
in	a	fractal	environment:	Spatial	patterns	in	a	marine	predator-	prey	
system.	Landscape Ecology,	7(3),	195–	209.	https://doi.org/10.1007/
BF001 33310

Sappington,	 J.	 M.,	 Longshore,	 K.	 M.,	 &	 Thompson,	 D.	 B.	 (2007).	
Quantifying	 landscape	 ruggedness	 for	 animal	 habitat	 analysis:	 A	
case	 study	 using	 bighorn	 sheep	 in	 the	Mojave	Desert.	 Journal of 
Wildlife Management,	71(5),	1419–	1426.

Sathyendranath,	 S.,	 Brewin,	 R.	 J.,	 Brockmann,	 C.,	 Brotas,	 V.,	 Calton,	
B.,	Chuprin,	A.,	Cipollini,	 P.,	Couto,	A.	B.,	Dingle,	 J.,	Doerffer,	R.,	
Donlon,	C.,	Dowell,	M.,	Farman,	A.,	Grant,	M.,	Groom,	S.,	Horseman,	
A.,	Jackson,	T.,	Krasemann,	H.,	Lavender,	S.,	…	Platt,	T.	(2019).	An	
ocean-	colour	time	series	for	use	in	climate	studies:	The	experience	
of	the	ocean-	colour	climate	change	initiative	(OC-	CCI).	Sensors,	19,	
4285.	https://doi.org/10.3390/s1919	4285

Scales,	K.	L.,	Miller,	P.	I.,	Embling,	C.	B.,	Ingram,	S.	N.,	Pirotta,	E.,	&	Votier,	
S.	C.	(2014).	Mesoscale	fronts	as	foraging	habitats:	Composite	front	
mapping	reveals	oceanographic	drivers	of	habitat	use	for	a	pelagic	
seabird. Journal of the Royal Society Interface,	11(100),	 20140679.	
https://doi.org/10.1098/rsif.2014.0679

Scales,	 K.	 L.,	Miller,	 P.	 I.,	 Hawkes,	 L.	 A.,	 Ingram,	 S.	N.,	 Sims,	D.	W.,	 &	
Votier,	 S.	 C.	 (2014).	 REVIEW:	 On	 the	 Front	 Line:	 Frontal	 zones	
as	 priority	 at-	sea	 conservation	 areas	 for	 mobile	 marine	 verte-
brates. Journal of Applied Ecology,	 51(6),	 1575–	1583.	 https://doi.
org/10.1111/1365-2664.12330

Schwartzlose,	R.	A.,	Alheit,	 J.,	Bakun,	A.,	Baumgartner,	T.	R.,	Cloete,	R.,	
Crawford,	R.	J.	M.,	Fletcher,	W.	J.,	Green-	Ruiz,	Y.,	Hagen,	E.,	Kawasaki,	
T.,	 Lluch-	Belda,	D.,	 Lluch-	Cota,	 S.	 E.,	MacCall,	A.	D.,	Matsuura,	 Y.,	
Nevárez-	Martínez,	M.	O.,	Parrish,	R.	H.,	Roy,	C.,	Serra,	R.,	Shust,	K.	V.,	
…	Zuzunaga,	J.	Z.	(1999).	Worldwide	large-	scale	fluctuations	of	sar-
dine	and	anchovy	populations.	South African Journal of Marine Science,	
21,	289–	347.	https://doi.org/10.2989/02577	61997	84125962

SEDAR.	 (2015).	 SEDAR 40— Atlantic menhaden stock assessment report. 
http://www.sefsc.noaa.gov/sedar/	Sedar_Works	hops.jsp?Works	
hopNu	m=40

Sherman,	K.,	&	Skjoldal,	H.	R.	(2002).	Large marine ecosystems of the North 
Atlantic: Changing states and sustainability.	Elsevier.

Smeti,	H.,	Pagano,	M.,	Menkes,	C.,	 Lebourges-	Dhaussy,	A.,	Hunt,	B.	P.	
V.,	Allain,	V.,	Rodier,	M.,	De	Boissieu,	F.,	Kestenare,	E.,	&	Sammari,	
C.	 (2015).	 Spatial	 and	 temporal	 variability	 of	 zooplankton	 off	
New	 Caledonia	 (Southwestern	 Pacific)	 from	 acoustics	 and	 net	

measurements.	 Journal of Geophysical Research: Oceans,	 120(4),	
2676–	2700.	https://doi.org/10.1002/2014J	C010441

Staudinger,	M.	D.,	Goyert,	H.,	Suca,	J.	J.,	Coleman,	K.,	Welch,	L.,	Llopiz,	
J.	K.,	Wiley,	D.,	Altman,	I.,	Applegate,	A.,	Auster,	P.,	Baumann,	H.,	
Beaty,	J.,	Boelke,	D.,	Kaufman,	L.,	Loring,	P.,	Moxley,	J.,	Paton,	S.,	
Powers,	K.,	Richardson,	D.,	…	Steinmetz,	H.	(2020).	The	role	of	sand	
lances	 (Ammodytes	 sp.)	 in	 the	 Northwest	 Atlantic	 Ecosystem:	 A	
synthesis	of	current	knowledge	with	implications	for	conservation	
and	 management.	 Fish and Fisheries,	 21(3),	 522–	556.	 https://doi.
org/10.1111/faf.12445

Steele,	 J.	 (1978).	Spatial pattern in Plankton communities	 (Vol.	3).	NATO	
Conference	Series,	Marine	Sciences	IV.	Plenum	Press.	https://doi.
org/10.1007/978-1-4899-2195-6

Suberg,	L.	A.,	Miller,	P.	I.,	&	Wynn,	R.	B.	(2019).	On	the	use	of	satellite-	derived	
frontal	metrics	 in	 time	 series	 analyses	 of	 shelf-	sea	 fronts,	 a	 study	
of	 the	Celtic	Sea.	Deep- Sea Research Part I: Oceanographic Research 
Papers,	149,	103033.	https://doi.org/10.1016/j.dsr.2019.04.011

Suca,	J.	 J.,	Deroba,	J.	 J.,	Richardson,	D.	E.,	 Ji,	R.,	&	Llopiz,	 J.	K.	 (2021).	
Environmental	drivers	and	trends	 in	forage	fish	occupancy	of	the	
Northeast	US	Shelf.	 ICES Journal of Marine Science,	78(10),	3687–	
3708.	https://doi.org/10.1093/icesj	ms/fsab214

Suca,	 J.	 J.,	Wiley,	 D.	 N.,	 Silva,	 T.	 L.,	 Robuck,	 A.	 R.,	 Richardson,	 D.	 E.,	
Glancy,	S.	G.,	Clancey,	E.,	Giandonato,	T.,	Solow,	A.	R.,	Thompson,	
M.	A.,	Hong,	P.,	Baumann,	H.,	Kaufman,	L.,	&	Llopiz,	 J.	K.	 (2021).	
Sensitivity	of	sand	lance	to	shifting	prey	and	hydrography	indicates	
forthcoming	 change	 to	 the	Northeast	 US	 Shelf	 forage	 fish	 com-
plex.	ICES Journal of Marine Science,	78(3),	1023–	1037.	https://doi.
org/10.1093/icesj	ms/fsaa251

Taburet,	 G.,	 Sanchez-Roman,	 A.,	 Ballarotta,	 M.,	 Pujol,	 M.-I.,	 Legeais,	
J.-F.,	 Fournier,	 F.,	 Faugere,	 Y.,	 &	 Dibarboure,	 G.	 (2019).	 DUACS	
DT2018:	 25	 years	 of	 reprocessed	 sea	 level	 altimetry	 products.	
Ocean Science,	 15(5),	 1207–	1224.	 https://doi.org/10.5194/
os-	15-	1207-	2019

Taylor,	 J.	 K.	 D.,	 Kenney,	 R.	 D.,	 LeRoi,	 D.	 J.,	 &	 Kraus,	 S.	 D.	 (2014).	
Automated	 vertical	 photography	 for	 detecting	 pelagic	 species	 in	
multitaxon	aerial	surveys.	Marine Technology Society Journal,	48(1),	
36–	48.	https://doi.org/10.4031/MTSJ.48.1.9

Thayne,	 M.	W.,	 Santora,	 J.	 A.,	 Saenz,	 B.,	Warzybok,	 P.,	 &	 Jahncke,	 J.	
(2019).	Combining	 seabird	diet,	 acoustics	and	ecosystem	surveys	
to	assess	temporal	variability	and	occurrence	of	forage	fish.	Journal 
of Marine Systems,	 190,	 1–	14.	 https://doi.org/10.1016/j.jmars	
ys.2018.08.006

Thiebault,	A.,	Semeria,	M.,	Lett,	C.,	&	Tremblay,	Y.	(2016).	How	to	capture	
fish	 in	a	school?	Effect	of	successive	predator	attacks	on	seabird	
feeding	success.	Journal of Animal Ecology,	85(1),	157–	167.	https://
doi.org/10.1111/1365-2656.12455

Tikhonov,	G.,	Opedal,	Ø.	H.,	Abrego,	N.,	Lehikoinen,	A.,	de	Jonge,	M.	M.	
J.,	Oksanen,	J.,	&	Ovaskainen,	O.	(2020).	Joint	species	distribution	
modelling	with	the	r-	package	Hmsc.	Methods in Ecology and Evolution,	
11(3),	442–	447.	https://doi.org/10.1111/2041-210X.13345

Torres,	 L.	G.,	 Read,	A.	 J.,	 &	Halpin,	 P.	 (2008).	 Fine-	scale	 habitat	mod-
eling	 of	 a	 top	marine	 predator:	Do	 prey	 data	 improve	 predictive	
capacity?	 Ecological Applications,	 18(7),	 1702–	1717.	 https://doi.
org/10.1890/07-1455.1

Turner,	S.	M.,	Manderson,	J.	P.,	Richardson,	D.	E.,	Hoey,	J.	J.,	&	Hare,	J.	
A.	(2016).	Using	habitat	association	models	to	predict	alewife	and	
blueback	 herring	 marine	 distributions	 and	 overlap	 with	 Atlantic	
herring	and	Atlantic	mackerel:	Can	incidental	catches	be	reduced?	
ICES Journal of Marine Science,	 73(7),	 1912–	1924.	 https://doi.
org/10.1093/ICESJ	MS/FSV166

Vehtari,	 A.,	 Gelman,	 A.,	 Simpson,	 D.,	 Carpenter,	 B.,	 &	 Burkner,	 P.	 C.	
(2021).	 Rank-	normalization,	 folding,	 and	 localization:	 An	 im-
proved	 (formula	 presented)	 for	 assessing	 convergence	 of	MCMC	
(with	 discussion).	 Bayesian Analysis,	 16(2),	 667–	718.	 https://doi.
org/10.1214/20-BA1221

https://doi.org/10.1016/j.envsoft.2010.03.029
https://doi.org/10.1038/srep22615
https://doi.org/10.1038/s41598-021-04110-0
https://remote.normandeau.com/nys_aer_overview.php
https://doi.org/10.1080/03632415.2015.1110791
https://doi.org/10.1080/03632415.2015.1110791
https://doi.org/10.1641/B580110
https://doi.org/10.1641/B580110
https://doi.org/10.1007/BF00133310
https://doi.org/10.1007/BF00133310
https://doi.org/10.3390/s19194285
https://doi.org/10.1098/rsif.2014.0679
https://doi.org/10.1111/1365-2664.12330
https://doi.org/10.1111/1365-2664.12330
https://doi.org/10.2989/025776199784125962
http://www.sefsc.noaa.gov/sedar/Sedar_Workshops.jsp?WorkshopNum=40
http://www.sefsc.noaa.gov/sedar/Sedar_Workshops.jsp?WorkshopNum=40
https://doi.org/10.1002/2014JC010441
https://doi.org/10.1111/faf.12445
https://doi.org/10.1111/faf.12445
https://doi.org/10.1007/978-1-4899-2195-6
https://doi.org/10.1007/978-1-4899-2195-6
https://doi.org/10.1016/j.dsr.2019.04.011
https://doi.org/10.1093/icesjms/fsab214
https://doi.org/10.1093/icesjms/fsaa251
https://doi.org/10.1093/icesjms/fsaa251
https://doi.org/10.5194/os-15-1207-2019
https://doi.org/10.5194/os-15-1207-2019
https://doi.org/10.4031/MTSJ.48.1.9
https://doi.org/10.1016/j.jmarsys.2018.08.006
https://doi.org/10.1016/j.jmarsys.2018.08.006
https://doi.org/10.1111/1365-2656.12455
https://doi.org/10.1111/1365-2656.12455
https://doi.org/10.1111/2041-210X.13345
https://doi.org/10.1890/07-1455.1
https://doi.org/10.1890/07-1455.1
https://doi.org/10.1093/ICESJMS/FSV166
https://doi.org/10.1093/ICESJMS/FSV166
https://doi.org/10.1214/20-BA1221
https://doi.org/10.1214/20-BA1221


    |  29 of 37GOETSCH et al.

Warton,	D.	I.,	Blanchet,	F.	G.,	O'hara,	R.	B.,	Ovaskainen,	O.,	Taskinen,	S.,	
Walker,	S.	C.,	&	Hui,	F.	K.	C.	(2015).	So	many	variables:	Joint	model-
ing	in	community	ecology	a	new	phase	for	community	modeling	in	
ecology.	Trends in Ecology & Evolution,	30(12),	766–	779.	https://doi.
org/10.1016/j.tree.2015.09.007

Watanabe,	S.	(2013).	A	widely	applicable	bayesian	information	criterion.	
Journal of Machine Learning Research,	14(1),	867–	897.

Wellenreuther,	M.,	 &	 Connell,	 S.	 D.	 (2002).	 Response	 of	 predators	 to	
prey	abundance:	Separating	the	effects	of	prey	density	and	patch	
size.	Journal of Experimental Marine Biology and Ecology,	273(1),	61–	
71.	https://doi.org/10.1016/S0022-0981(02)00145-4

Wessel,	P.,	&	Smith,	W.	H.	F.	(1996).	A	global,	self-	consistent,	hierarchical,	
high-	resolution	shoreline	database.	Journal of Geophysical Research: 
Solid Earth,	101(4),	8741–	8743.	https://doi.org/10.1029/96jb0	0104

Weston,	K.,	Fernand,	L.,	Mills,	D.	K.,	Delahunty,	R.,	&	Brown,	J.	(2005).	
Primary	production	in	the	deep	chlorophyll	maximum	of	the	central	
North	Sea.	Journal of Plankton Research,	27(9),	909–	922.	https://doi.
org/10.1093/PLANK	T/FBI064

Williams,	J.	W.,	&	Jackson,	S.	T.	(2007).	Novel	climates,	no-	analog	com-
munities,	 and	 ecological	 surprises.	 Frontiers in Ecology and the 
Environment,	5(9),	475–	482.	https://doi.org/10.1890/070037

Williams,	K.	A.,	Connelly,	E.	E.,	Johnson,	S.	M.,	&	Stenhouse,	I.	J.	(2015).	
Wildlife densities and habitat use across temporal and spatial Scales 
on the Mid- Atlantic Outer Continental Shelf: Final report to the 
Department of Energy EERE Wind & Water Power Technologies Office,	
Award	Number:	DE-	EE0005362.	Report	BRI	2015-	11.	Biodiversity	
Research	Institute.

Winship,	A.	J.,	Kinlan,	B.	P.,	White,	T.	P.,	Leirness,	J.	B.,	&	Christensen,	
J.	(2018).	Modeling at- sea density of marine birds to support Atlantic 
marine renewable energy planning: Final report.	OCS	Study	BOEM	
2018–	010.	 U.S.	 Department	 of	 the	 Interior,	 Bureau	 of	 Ocean	
Energy	Management,	Office	of	Renewable	Energy	Programs,	p.	
67.

Zuur,	A.	F.,	Ieno,	E.	N.,	Walker,	N.,	Saveliev,	A.	A.,	&	Smith,	G.	M.	(2009).	
Mixed effects models and extensions in ecology with R.	 Springer	
(Statistics	 for	 Biology	 and	 Health).	 https://doi.org/10.18637/	jss.
v032.b01

How to cite this article: Goetsch,	C.,	Gulka,	J.,	Friedland,	K.	
D.,	Winship,	A.	J.,	Clerc,	J.,	Gilbert,	A.,	Goyert,	H.	F.,	
Stenhouse,	I.	J.,	Williams,	K.	A.,	Willmott,	J.	R.,	Rekdahl,	M.	
L.,	Rosenbaum,	H.	C.,	&	Adams,	E.	M.	(2023).	Surface	and	
subsurface	oceanographic	features	drive	forage	fish	
distributions	and	aggregations:	Implications	for	prey	
availability	to	top	predators	in	the	US	Northeast	Shelf	
ecosystem.	Ecology and Evolution,	13,	e10226.	https://doi.
org/10.1002/ece3.10226

APPENDIX 1

DATA INFORMATION

Section 1: Response data accessibility information

Bottom trawl data
Northeast	Fisheries	Science	Center,	2020:	Fall	Bottom	Trawl	Survey	
from	1997	to	2019,	Catalog	ID:	22560.	NOAA	National	Centers	for	
Environmental	Information,	https://www.fishe	ries.noaa.gov/inpor	t/
item/22560.
Northeast	Fisheries	Science	Center,	2020:	Spring	Bottom	Trawl	

Survey	 from	 1998	 to	 2019,	 Catalog	 ID:	 22561.	 NOAA	 National	
Centers	for	Environmental	Information,	https://www.fishe	ries.noaa.
gov/inpor	t/item/22561.

Aerial digital survey data
APEM	 and	Normandeau	 Associates	 prepared	 for	 New	 York	 State	
Energy	Research	and	Development	Authority.	2018.	Digital	Aerial	
Baseline	 Survey	 of	Marine	Wildlife	 in	 Support	 of	 Offshore	Wind	
Energy	–		OPA	2016.	OBIS-	SEAMAP	ID:	1817.	Data	accessible	from	
OBIS-	SEAMAP	(http://seamap.env.duke.edu/datas	et/1817).
APEM	and	Normandeau	Associates	prepared	for	New	York	State	

Energy	Research	and	Development	Authority.	2018.	Digital	Aerial	
Baseline	 Survey	 of	Marine	Wildlife	 in	 Support	 of	 Offshore	Wind	
Energy	–		WEA	2016.	OBIS-	SEAMAP	ID:	1818.	Data	accessible	from	
OBIS-	SEAMAP	(http://seamap.env.duke.edu/datas	et/1818).
APEM	and	Normandeau	Associates	prepared	for	New	York	State	

Energy	Research	 and	Development	Authority.	 2019.	Digital	Aerial	

Baseline	 Survey	 of	Marine	Wildlife	 in	 Support	 of	 Offshore	Wind	
Energy	–		OPA	2017.	OBIS-	SEAMAP	ID:	1994.	Data	accessible	from	
OBIS-	SEAMAP	(https://seamap.env.duke.edu/datas	et/1994).
APEM	 and	 Normandeau	 Associates	 prepared	 for	 New	 York	

State	Energy	Research	and	Development	Authority.	2019.	Digital	
Aerial	Baseline	Survey	of	Marine	Wildlife	in	Support	of	Offshore	
Wind	Energy	–		OPA	2018.	OBIS-	SEAMAP	ID:	2073.	Data	acces-
sible	 from	 OBIS-	SEAMAP	 (https://seamap.env.duke.edu/datas	
et/2073).
Biodiversity	Research	 Institute	and	HiDef	Aerial	Surveying	pre-

pared	for	the	Department	of	Energy	Mid-	Atlantic	2015.	Mid-	Atlantic	
Digital	Aerial	Survey	2012	–		DOE/BRI,	ID	115.	Accessible	through	
the	NOAA	National	 Centers	 for	 Coastal	Ocean	 Science	 (NCCOS),	
Northwest	 Atlantic	 Seabird	 Catalog	 Version	 0.6.2.	 Data	 available	
upon	 request:	 Contact	 Arliss	 Winship,	 CSS,	 Inc.	 under	 contract	
to	NOAA,	 Biogeography	Branch,	Marine	 Spatial	 Ecology	Division,	
NCCOS,	 1305	 East–	West	 Hwy,	 SSMC-	4,	 N/SCI-	1,	 #9245,	 Silver	
Spring,	MD	20910,	arliss.winship@noaa.gov.	Data	can	also	be	down-
loaded at https://briwi	ldlife.org/wp-conte	nt/uploa	ds/2021/09/
BRI_DOE_Hidef_aeria	lSurv	eys_final.zip.
Biodiversity	Research	 Institute	and	HiDef	Aerial	Surveying	pre-

pared	for	the	Department	of	Energy.	2015.	Mid-	Atlantic	Digital	Aerial	
Survey	 2013	 –		 DOE/BRI,	 ID	 148.	 Accessible	 through	 the	 NOAA	
National	 Centers	 for	 Coastal	Ocean	 Science	 (NCCOS),	 Northwest	
Atlantic	 Seabird	 Catalog	 Version	 0.6.2.	 Data	 available	 upon	 re-
quest:	Contact	Arliss	Winship,	CSS,	 Inc.	under	contract	 to	NOAA,	
Biogeography	 Branch,	 Marine	 Spatial	 Ecology	 Division,	 NCCOS,	
1305	East–	West	Hwy,	SSMC-	4,	N/SCI-	1,	#9245,	Silver	Spring,	MD	
20910,	 arliss.winship@noaa.gov.	 Data	 can	 also	 be	 downloaded	 at	
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https://briwi	ldlife.org/wp-conte	nt/uploa	ds/2021/09/BRI_DOE_
Hidef_aeria	lSurv	eys_final.zip.
Biodiversity	Research	 Institute	and	HiDef	Aerial	Surveying	pre-

pared	 for	 the	 Department	 of	 Energy.	 2015.	 Mid-	Atlantic	 Digital	
Aerial	 Survey	 2014	 –		 DOE/BRI,	 ID	 168.	 Accessible	 through	 the	
NOAA	 National	 Centers	 for	 Coastal	 Ocean	 Science	 (NCCOS),	
Northwest	 Atlantic	 Seabird	 Catalog	 Version	 0.6.2.	 Data	 available	
upon	 request:	 Contact	 Arliss	 Winship,	 CSS,	 Inc.	 under	 contract	
to	NOAA,	 Biogeography	Branch,	Marine	 Spatial	 Ecology	Division,	
NCCOS,	 1305	 East–	West	 Hwy,	 SSMC-	4,	 N/SCI-	1,	 #9245,	 Silver	
Spring,	MD	20910,	arliss.winship@noaa.gov.	Data	can	also	be	down-
loaded at https://briwi	ldlife.org/wp-conte	nt/uploa	ds/2021/09/
BRI_DOE_Hidef_aeria	lSurv	eys_final.zip.

Section 2: Front detection
We	detected	sea	surface	temperature	(SST)	and	chlorophyll	a	(Chla)	
fronts	 from	daily	 rasters	 (Appendix 1 Table A2),	using	 the	Cayula-	
Cornillon	 Fronts	 tool	 in	 the	 Marine	 Geospatial	 Ecology	 (MGET)	
toolbox	 (version	 0.8a75,	 Roberts	 et	 al.,	2010)	 for	 ArcGIS	 (version	
10.8.1,	 ESRI	 Inc.).	 This	 tool	 uses	 the	 Cayula	 and	 Cornillon	 SIED	
(Single	 Image	Edge	Detection)	algorithm	 to	 identify	 fronts	 (Cayula	
&	Cornillon,	1992).	For	the	detection	of	SST	fronts,	we	used	a	0.4°C	
temperature	 threshold	 (Cayula	&	Cornillon,	1992).	To	 increase	de-
tection	of	coastal	and	smaller	scale	fronts,	we	adjusted	the	default	
tool	settings	to	a	16 × 16	pixel	window,	a	4	window	stride,	and	a	5 × 5	

kernel	(Roa-	Pascuali	et	al.,	2015).	We	also	adjusted	the	spatial	cohe-
sion	parameters	to	reflect	the	smaller	histogram	window:	0.87	mini-
mum	 single	 population	 spatial	 cohesion	 and	 0.88	minimum	 global	
population	spatial	cohesion	(Cayula	&	Cornillon,	1992).	For	the	de-
tection	of	Chla	fronts,	we	optimized	the	CCA	parameters	to	better	
detect	coastal	fronts,	using	a	0.4 mg/m3	threshold.	As	with	the	SST	
fronts,	we	adjusted	the	parameters	as	follows:	a	16 × 16	pixel	win-
dow,	a	3	window	stride	and	a	5 × 5	kernel,	 changing	 the	minimum	
single	 and	global	 population	 cohesion	values	 accordingly.	We	also	
set	the	minimum	criterion	function	to	0.74	to	allow	“curvier”	fronts	
to	be	identified	(Cayula	&	Cornillon,	1992).	We	used	the	thin	option	
to	ensure	one-	pixel-	width	fronts.
Frontal	 gradients	 were	 calculated	 for	 SST	 and	 Chla	 using	 the	

Belkin	O'Reilly	gradient	algorithm	(Belkin	&	O'Reilly,	2009)	with	the	
detectFronts	function	in	the	grec	package	in	R	(version	1.4.1).	Then,	
all	 detected	 fronts	 and	 calculated	 gradients	 over	 a	 7-	day	 moving	
window	were	combined	 into	daily	composite	 frontal	maps	 (Scales,	
Miller,	Embling,	et	al.,	2014),	and	used	to	calculate	two	frontal	met-
rics: Fprob	and	Fmean	(Miller,	2009;	Suberg	et	al.,	2019)	for	each	day	
of	the	study	period	(1997–	2019).	Fprob	is	a	measure	of	front	persis-
tence	and	is	calculated	as	the	probability	of	a	front	being	detected	
each	day	over	the	rolling	7-	day	window.	Fmean	is	a	measure	of	front	
intensity	 and	 is	 calculated	 as	 the	 average	 of	 the	 frontal	 gradient	
within	the	detected	fronts.
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TA B L E  A 1 Static	environmental	data	details	and	access	information.

Covariate Description
Spatial 
resolution Data source References

BPI Benthic	position	index:	derived	
from	slope.

350 m Derived	from	NAMERAa	bathymetry	
data	with	an	inner	radius = 5	and	
outer	radius = 50

Lundblad	et	al.	(2006)

Complexity Terrain	ruggedness	index 500 m Derived	from	NOAA	Coastal	Relief	
Model,	NCEI

https://doi.org/10.7289/V5MS3QNZ

Riley	et	al.	(1999)

Depth	(log) Log	of	the	bathymetric	elevation 15 arc- sec General	bathymetric	chart	of	the	
oceans	(GEBCO):	https://www.
gebco.net/

https://doi.org/10.5285/a29c5	
465-b138-234d-e053-6c86a	
bc040b9

GEBCO	Compilation	
Group	(2020)

Distance	to	shelf Distance	in	kilometers	to	the	
200 m	isobath	representing	the	
continental	shelf	break

4 km Derived	from	GSHHGb	(Global	
Self-	consistent	Hierarchical	High	
Resolution	Geography)	Shorelines	
Version	2.3.7,	2017,	using	ArcGIS	
10.8.1.

Wessel	and	
Smith	(1996)

Distance	to	shore Distance	in	kilometers	to	the	
GSSHHG	shoreline

4 km Derived	from	GSHHGb	(Global	
Self-	consistent	Hierarchical	High	
Resolution	Geography)	Shorelines	
Version	2.3.7,	2017,	using	ArcGIS	
10.8.1.

Wessel	and	
Smith	(1996)

Planform	curvature Benthic	planform	curvature 15 arc- sec Derived	from	Gaussian	smoothed	
(2 km	spatial	scale)	GEBCO	
bathymetry

Winship	et	al.	(2018)

Profile	curvature Benthic	profile	curvature 15 arc- sec Derived	from	Gaussian	smoothed	
(2 km	spatial	scale)	GEBCO	
bathymetry

Winship	et	al.	(2018)

Rugosity Variation	in	amplitude	of	the	height	
of	the	bathymetric	terrain	as	
given	by	the	ratio	of	the	actual	
to	the	geometric	surface	area

500 m Derived	from	NOAA	Coastal	Relief	
Model,	NCEI

https://doi.org/10.7289/V5MS3QNZ

Friedman	et	al.	(2012)

Seabedforms Categorical	seabed	topography;	
combination	of	the	seabed	
topographical	position	and	
shape

80 m North	Atlantic	Marine	Ecoregional	
Assessment	(NAMERA)a

Greene	et	al.	(2010)

Slope Benthic	slope 15 arc- sec Derived	from	Gaussian	smoothed	
(2 km	scale)	GEBCO	bathymetry,	
using	DEM	Surface	Toolsc

Winship	et	al.	(2018)

Slope	of	slope Slope	of	the	benthic	slope 15 arc- sec Derived	from	Gaussian	smoothed	
(2 km	scale)	GEBCO	bathymetry,	
using	DEM	Surface	Toolsc

Winship	et	al.	(2018)

Sediment Benthic	soft	sediment	grain	size	
(mm)

700 m North	Atlantic	Marine	Ecoregional	
Assessment	(NAMERA)a

Greene	et	al.	(2010)

VRM Vector	ruggedness	measure;	the	
variation	in	the	3-	d	orientation	
of	cells	in	a	neighborhood

350 m Derived	from	NAMERAa	bathymetry	
data

Sappington	
et	al.	(2007)

aData access: http://www.conse	rvati	ongat	eway.org/Conse	rvati	onByG	eogra	phy/North	Ameri	ca/Unite	dStat	es/edc/repor	tsdat	a/marin	e/namer	a/
namer	a/Pages/	Spati	al-Data.aspx.
bData access: https://www.ngdc.noaa.gov/mgg/shore	lines/.
cData	access:	Jenness,	2013.

https://doi.org/10.7289/V5MS3QNZ
https://www.gebco.net/
https://www.gebco.net/
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
https://doi.org/10.7289/V5MS3QNZ
http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/marine/namera/namera/Pages/Spatial-Data.aspx
http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/reportsdata/marine/namera/namera/Pages/Spatial-Data.aspx
https://www.ngdc.noaa.gov/mgg/shorelines/
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APPENDIX 2

FORAGE FISH MODELS

Model
Total iterations 
(million)

Burn- in 
(million) Thin

Samples 
per chain

Total samples 
(4 chains)

Autumn	Fprob 2.5 1 750 2000 8000

Autumn	Fmean 3.3 1.5 900 2000 8000

Spring	Fprob 3.6 1.5 700 3000 12,000

Spring	Fmean 3.6 1.5 700 3000 12,000

Note:	Models	were	run	with	different	sampling	parameters	to	achieve	adequate	chain	convergence	
and	mixing.

TA B L E  A 1 Markov	Chain	Monte	Carlo	
(MCMC)	posterior	distribution	sampling	
parameters	for	the	forage	fish	community	
models.

TA B L E  A 2 Beta	parameter	estimates	for	(a)	autumn	and	(b)	spring	community	models.

Species Depth (log) Rugosity Sediment SST Chla FSLE MLD Salinity SST Fprob Chl Fprob

(a)

alewif −0.17 0.26 −0.68 −0.56 0.11 5.27 −0.01 −0.37 0.36 −1.06

atherr −1.57 −0.75 −0.22 0.47 −0.04 −0.32 0.06 0.07 0.78 3.21

atlher 0.58 0.09 −0.16 −0.28 0.03 3.77 0.01 −0.46 −0.08 0.53

atlmac −0.50 0.07 −0.03 −0.25 0.02 −0.93 0.00 0.04 0.31 −0.73

atlmen −0.76 −0.09 −0.21 0.00 0.03 3.52 −0.01 −0.10 −0.84 −0.46

atsaur 0.14 −0.04 0.12 −0.08 0.02 −2.08 0.00 −0.22 0.27 0.56

bayanc −1.43 −0.01 −0.12 0.15 0.09 2.17 0.01 −0.30 −0.75 0.51

bluher −0.97 0.03 −0.59 −0.55 0.09 2.57 −0.02 −0.25 0.39 −0.67

butter −0.69 −0.08 −0.23 0.03 0.04 −0.59 0.01 −0.08 0.08 −0.07

rherri −0.42 −0.12 −0.10 0.09 −0.04 −0.29 −0.03 −0.04 −0.55 0.53

sandla −0.32 −0.19 0.33 −0.07 −0.09 −0.66 −0.01 0.00 −0.11 0.53

silanc −0.67 −0.15 −0.11 0.03 0.03 −1.49 −0.01 0.09 0.11 −0.50

spsard −1.03 −0.43 −0.25 0.35 −0.05 −0.73 0.05 0.13 0.13 0.40

stranc −1.89 −0.81 −0.35 0.47 0.01 1.71 0.07 0.07 −0.43 3.63

Absolute	mean 0.80 0.22 0.25 0.24 0.05 1.87 0.02 0.16 0.37 0.96

(b)

alewif 0.55 - −0.35 −0.16 0.15 7.69 −0.02 −0.31 −0.16 −0.39

atlher 0.02 - −0.12 −0.15 0.07 4.85 0.00 −0.22 −0.61 0.52

atlmac −0.18 - −0.21 −0.17 −0.17 2.21 0.03 0.41 −1.04 −0.27

atlmen −0.58 - −0.41 0.07 −0.03 −0.31 −0.01 −0.05 −1.86 0.94

atlsil −0.88 - −0.23 −0.36 0.00 −0.43 −0.04 −0.07 1.06 −0.32

bayanc −0.72 - −0.31 0.16 −0.05 0.04 0.01 −0.21 −0.87 −0.42

bluher −0.17 - −0.45 −0.06 0.06 10.22 −0.03 −0.27 −0.67 −0.47

butter 0.04 - −0.36 0.15 −0.06 −2.69 0.00 0.30 −0.11 −0.64

sandla −0.55 - 0.27 −0.14 0.04 3.19 0.00 0.16 0.34 0.44

stranc −0.73 - −0.60 0.12 −0.08 3.29 0.00 0.21 −0.17 −0.40

Absolute	mean 0.44 - 0.33 0.15 0.07 3.49 0.01 0.22 0.69 0.48

Note:	Values	in	black	are	supported	with	at	least	0.95	posterior	probability;	grayed-	out	values	had	<	0.95	posterior	probability.	Species	codes	are	
defined	in	Table 1.
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TA B L E  A 3 Estimated	prevalence	(mean	probability	of	occurrence)	of	species	within	distinct	forage	fish	communities	for	the	(a)	autumn	
and	(b)	spring	community	models.

Species Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

(a)

alewif 0.315 0.637 0.200 0.118 0.007 0.000

atherr 0.286 0.000 0.000 0.000 0.002 0.000

atlher 0.051 0.845 0.736 0.334 0.072 0.138

atlmac 0.546 0.219 0.094 0.204 0.055 0.005

atlmen 0.629 0.003 0.000 0.013 0.023 0.000

atsaur 0.020 0.070 0.064 0.045 0.017 0.014

bayanc 0.917 0.000 0.000 0.007 0.033 0.000

bluher 0.649 0.086 0.003 0.040 0.004 0.000

butter 0.998 0.525 0.388 0.758 0.789 0.129

rherri 0.196 0.000 0.000 0.003 0.015 0.000

sandla 0.160 0.020 0.020 0.056 0.037 0.006

silanc 0.311 0.000 0.000 0.002 0.007 0.000

spsard 0.117 0.000 0.000 0.000 0.002 0.000

stranc 0.590 0.000 0.000 0.000 0.011 0.000

(b)

alewif 0.237 0.654 0.581 0.252 0.162 0.164

atlher 0.424 0.402 0.282 0.266 0.134 0.027

atlmac 0.031 0.125 0.174 0.118 0.108 0.074

atlmen 0.374 0.003 0.001 0.017 0.014 0.008

atlsil 0.311 0.003 0.000 0.006 0.000 0.000

bayanc 0.654 0.004 0.000 0.029 0.023 0.019

bluher 0.712 0.176 0.081 0.155 0.083 0.007

butter 0.114 0.163 0.327 0.217 0.479 0.858

sandla 0.308 0.030 0.011 0.084 0.021 0.002

stranc 0.208 0.000 0.000 0.004 0.006 0.010

Note:	Species	codes	are	defined	in	Table 1.
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F I G U R E  A 1 Potential	scale	reduction	
factors	(PSRFs)	and	effective	sample	
size	(ESS)	for	monitored	parameters	to	
evaluate	autumn	(a,	c)	and	spring	(b,	d)	
HMSC	model	convergence	for	the	best	
fitting	Fprob	models.	For	the	PSRF	values,	
the	autumn	model	had	96.6%,	and	the	
spring	model	had	82.4%	below	1.1	(red	
dashed	line).	The	0.95	quantiles	for	PSRF	
were	1.06	and	1.26	for	autumn	and	
spring,	respectively.	The	ESS	values	of	
all	parameters	for	both	models	are	above	
400	(red	dashed	line).
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F I G U R E  A 2 Posterior	predictive	check	for	(a)	abundance	and	
(b)	size	forage	fish	aggregation	models,	showing	the	observed	
versus	expected	Chi-	square	discrepancy	measures	(Freeman–	Tukey	
goodness-	of-	fit)	and	the	calculated	Bayesian	p-	values	(bpv).
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F I G U R E  A 3 Residual	species-	to-	species	associations	(i.e.,	species	which	co-	occur	more	or	less	than	expected	based	on	species'	niches)	
in	the	(a,	b)	autumn	and	(c,	d)	spring	community	models.	Panels	(a)	and	(c)	are	due	to	the	temporal	random	effect,	while	panels	(b)	and	(d)	
are	due	to	the	tow	random	effect.	Orange	and	blue	indicate	species	pairs	with	at	least	0.95	posterior	support	for	a	positive	or	negative	
association,	respectively.	The	intensity	of	color	and	size	of	the	marker	indicates	the	strength	of	the	association	(in	units	of	correlation).	
Species	codes	are	defined	in	Table 1.
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